Predicting image quality using a modular image difference model

Part of book or chapter of book English OPEN
Orfanidou, Maria ; Triantaphillidou, Sophie ; Allen, Elizabeth
  • Publisher: IS&T - The Society for Imaging and Science and Technology and SPIE
  • Related identifiers: doi: 10.1117/12.766407
  • Subject: UOW3

The paper is focused on the implementation of a modular color image difference model, as described in [1], with aim to predict visual magnitudes between pairs of uncompressed images and images compressed using lossy JPEG and JPEG\ud 2000. The work involved programming each pre-processing step, processing each image file and deriving the error map,\ud which was further reduced to a single metric. Three contrast sensitivity function implementations were tested; a\ud Laplacian filter was implemented for spatial localization and the contrast masked-based local contrast enhancement\ud method, suggested by Moroney, was used for local contrast detection. The error map was derived using the CIEDE2000\ud color difference formula on a pixel-by-pixel basis. A final single value was obtained by calculating the median value of\ud the error map. This metric was finally tested against relative quality differences between original and compressed\ud images, derived from psychophysical investigations on the same dataset. The outcomes revealed a grouping of images\ud which was attributed to correlations between the busyness of the test scenes (defined as image property indicating the\ud presence or absence of high frequencies) and different clustered results. In conclusion, a method for accounting for the\ud amount of detail in test is required for a more accurate prediction of image quality.
  • References (2)

    1 2 G.M. Johnson, and M.D. Fairchild, “Measuring Images: Differences, Quality and Appearance”, Proc. SPSPIE/IS&T Electronic Imaging Conference, Santa Clara, 5007 51-60 (2003).

    G.M. Johnson, “Appearance can be deceiving: using appearance models in color imaging”, Proc. SPIE/IS&T Electronic Imaging Conference, San Jose, 6494 G-0 - G-9 (2007).

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    WestminsterResearch - IRUS-UK 0 148
Share - Bookmark