Glycosylated gold nanoparticle libraries for label-free multiplexed lectin biosensing

Article English OPEN
Richards, Sarah-Jane ; Otten, Lucienne ; Gibson, Matthew I. (2015)

Glycan/lectin interactions drive a wide range of recognition and signal transduction processes within nature. However, their measurement is complicated or limited by the analytical tools available. Most technologies require fluorescently labelled proteins (e.g. microarrays) or expensive infrastructure (such as surface plasmon resonance). This also limits their application in biosensing, especially for low-resource settings, where detection of pathogens based on glycan binding could speed up diagnosis. Here we employ a library-oriented approach to immobilise a range of monosaccharides onto polymer-stabilised gold nanoparticles to enable rapid and high-throughput evaluation of their binding specificities with a panel of lectins. The red to blue colour shift upon gold nanoparticle aggregation is used as the output, removing the need for labelled protein, enabling compatibility with 96-well microplates. Furthermore, we demonstrate the use of a flatbed scanner (or digital camera) to extract biophysical data, ensuring that only minimal resources are required. Finally, linear discriminant analysis is employed to demonstrate how the glyconanoparticles can be applied as a multiplexed biosensor capable of identifying pathogenic lectins without the need for any infrastructure and overcoming some of the issues of lectin promiscuity.
  • References (17)
    17 references, page 1 of 2

    1 C. R. Bertozzi and L. L. Kiessling, Science, 2001, 291, 2357-2364.

    2 L. L. Kiessling, J. E. Gestwicki and L. E. Strong, Angew. Chem., Int. Ed., 2006, 45, 2348-2368.

    3 K. T. Pilobello and L. K. Mahal, Curr. Opin. Chem. Biol., 2007, 11, 300-305.

    4 N. Sharon, Biochim. Biophys. Acta, 2006, 1760, 527-537.

    5 R. J. Pieters, Org. Biomol. Chem., 2009, 7, 2013-2025.

    6 M. Ambrosi, N. R. Cameron and B. G. Davis, Org. Biol. Chem., 2005, 3, 1593-1608.

    7 H. Feinberg, D. A. Mitchell, K. Drickamer and W. I. Weis, Science, 2001, 294, 2163-2166.

    8 Y. C. Lee, R. R. Townsend, M. R. Hardy, J. Lonngren, J. Arnarp, M. Haraldsson and H. Lonn, J. Biol. Chem., 1983, 258, 199-202.

    9 J. J. Lundquist and E. J. Toone, Chem. Rev., 2002, 102, 555-578.

    10 N. P. Pera and R. J. Pieters, MedChemComm, 2014, 5, 1027-1035.

  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    26
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Warwick Research Archives Portal Repository - IRUS-UK 0 26
Share - Bookmark