Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds

Article English OPEN
Korhonen, H ; Carslaw, KS ; Forster, PM ; Mikkonen, S ; Gordon, ND ; Kokkola, H (2010)
  • Publisher: American Geophysical Union
  • Subject:
    mesheuropmc: complex mixtures | sense organs

Observations indicate that the westerly jet in the Southern Hemisphere troposphere is accelerating. Using a global aerosol model we estimate that the increase in wind speed of 0.45 + /- 0.2 m s(-1) decade(-1) at 50-65 degrees S since the early 1980s caused a higher sea spray flux, resulting in an increase of cloud condensation nucleus concentrations of more than 85% in some regions, and of 22% on average between 50 and 65 degrees S. These fractional increases are similar in magnitude to the decreases over many northern hemisphere land areas due to changes in air pollution over the same period. The change in cloud drop concentrations causes an increase in cloud reflectivity and a summertime radiative forcing between at 50 and 65 degrees S comparable in magnitude but acting against that from greenhouse gas forcing over the same time period, and thus represents a substantial negative climate feedback. However, recovery of Antarctic ozone depletion in the next two decades will likely cause a fall in wind speeds, a decrease in cloud drop concentration and a correspondingly weaker cloud feedback.
  • References (25)
    25 references, page 1 of 3

    Carslaw, K. S., O. Boucher, D. V. Spracklen, G. W. Mann, J. G. L. Rae, S. Woodward, and M. Kulmala (2009), Atmospheric aerosols in the Earth system: A review of interactions and feedbacks, Atmos. Chem. Phys. Discuss., 9, 11,087 - 11,183.

    Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren (1987), Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655 - 661, doi:10.1038/326655a0.

    Edwards, J. M., and A. Slingo (1996), Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model, Q. J. R. Meteorol. Soc., 122, 689 - 719, doi:10.1002/qj.49712253107.

    Evan, A. T., A. K. Heidinger, and D. J. Vimont (2007), Arguments against a physical long-term trend in global ISCCP cloud amounts, Geophys. Res. Lett., 34, L04701, doi:10.1029/2006GL028083.

    Forster, P., et al. (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., pp. 129 - 234, Cambridge Univ. Press, Cambridge, U. K.

    Forster, P. M. de F., and K. P. Shine (1997), Radiative forcing and temperature trends from stratospheric ozone changes, J. Geophys. Res., 102, 10,841 - 10,857, doi:10.1029/96JD03510.

    Fyfe, J. C., G. J. Boer, and G. M. Flato (1999), The Arctic and Antarctic oscillations and their projected changes under global warming, Geophys. Res. Lett., 26, 1601 - 1604, doi:10.1029/1999GL900317.

    Kettle, A. J., and M. O. Andreae (2000), Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models, J. Geophys. Res., 105, 26,793 - 26,808, doi:10.1029/2000JD900252.

    Korhonen, H., K. S. Carslaw, D. V. Spracklen, G. W. Mann, and M. T. Woodhouse (2008), Influence of oceanic DMS emissions on CCN concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study, J. Geophys. Res., 113, D15204, doi:10.1029/ 2007JD009718.

    Latham, J., and M. H. Smith (1990), Effect on global warming of winddependent aerosol generation at the ocean surface, Nature, 347, 372 - 373, doi:10.1038/347372a0.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    White Rose Research Online - IRUS-UK 0 57
Share - Bookmark