O,N,N-Pincer ligand effects on oxidatively induced carbon–chlorine coupling reactions at palladium

Article English OPEN
Wright, LA ; Hope, EG ; Solan, GA ; Cross, WB ; Singh, K (2015)

The syntheses of two families of sterically tuneable O,N,N pro-ligands are reported, namely the 2-(phenyl-2′-ol)-6-imine-pyridines, 2-(C6H4-2′-OH),6-(CMe[double bond, length as m-dash]NAr)C5H3N [Ar = 4-i-PrC6H4 (HL1a), 2,6-i-Pr2C6H3 (HL1b)] and the 2-(phenyl-2′-ol)-6-(amino-prop-2-yl)pyridines, 2-(C6H4-2′-OH),6-(CMe2NHAr)C5H3N [Ar = 4-i-PrC6H4 (HL2a), 2,6-i-Pr2C6H3 (HL2b)], using straightforward synthetic approaches and in reasonable overall yields. Interaction of HL1a/c and HL2a/b with palladium(II) acetate affords the O,N,N-pincer complexes, [{2-(C6H4-2′-O)-6-(CMe[double bond, length as m-dash]NAr)C5H3N}Pd(OAc)] (Ar = 4-i-PrC6H4 (1a), 2,6-i-Pr2C6H3 (1b)) and [{2-(C6H4-2′-O)-6-(CMe2NHAr)C5H3N}Pd(OAc)] (Ar = 4-i-PrC6H4 (2a), 2,6-i-Pr2C6H3 (2b)), which can be readily converted to their chloride derivatives, [{2-(C6H4-2′-O)-6-(CMe[double bond, length as m-dash]NAr)C5H3N}PdCl] (Ar = 4-i-PrC6H4 (3a), 2,6-i-Pr2C6H3 (3b)) and [{2-(C6H4-2′-O)-6-(CMe2NHAr)C5H3N}PdCl] (Ar = 4-i-PrC6H4 (4a), 2,6-i-Pr2C6H3 (4b)), respectively, on reaction with an aqueous sodium chloride solution. Treating each of 3a, 3b, 4a and 4b with two equivalents of di-p-tolyliodonium triflate at 100 °C in a toluene/acetonitrile mixture affords varying amounts of 4-chlorotoluene along with the 4-iodotoluene by-product with the conversions highly dependent on the steric and backbone properties of the pincer complex employed (viz.4a > 3a > 4b > 3b); notably, the least sterically bulky and most flexible amine-containing 4a reaches 90% conversion to 4-chlorotoluene in 15 h as opposed to 17% for imine-containing 3b. In the case of 3a, the inorganic palladium species recovered from the reaction has been identified as the Pd(II) salt [{2-(C6H4-2′-O)-6-(CMe[double bond, length as m-dash]N(4-i-PrC6H4)C5H3N}Pd(NCMe)][O3SCF3] (5a), which was independently prepared by the reaction of 3a with silver triflate in acetonitrile. Single crystal X-ray structures are reported for HL1a, HL2a, 1a, 1b, 2a, 2b, 3a and 5a.
  • References (12)
    12 references, page 1 of 2

    1 For reviews see: (a) N. R. Deprez and M. S. Sanford, Inorg. Chem., 2007, 46, 1924-1935; (b) P. J. Stang and V. V. Zhdankin, Chem. Rev., 1996, 96, 1123-1178; (c) A. Varvoglis, Tetrahedron, 1997, 53, 1179-1255; (d) T. Wirth and U. H. Hirt, Synthesis, 1999, 1271-1287; (e) T. Okuyama, Acc. Chem. Res., 2002, 35, 12-18; (f ) V. V. Zhdankin and P. Stang, Chem. Rev., 2002, 102, 2523-2584; (g) Hypervalent Iodine Chemistry, Modern Developments in Organic Synthesis, in Topics in Current Chemistry, ed. T. Wirth, Springer, New York, 2003, vol. 224; (h) A. J. Canty, T. Rodemann and J. H. Ryan, Adv. Organomet. Chem., 2008, 55, 279-313; (i) K. Muñiz, Angew. Chem., Int. Ed., 2009, 48, 9412-9423.

    2 (a) J. Aydin, J. M. Larsson, N. Selander and K. J. Szabo, Org. Lett., 2009, 11, 2852-2854; (b) E. A. Marritt and B. Olofsson, Angew. Chem., Int. Ed., 2009, 48, 9052-9070; (c) L.-M. Xu, B.-J. Li, Z. Yang and Z.-J. Shi, Chem. Soc. Rev., 2010, 39, 712-733; (d) P. D. Chaudhuri, R Guo and H. C. Malinakova, J. Organomet. Chem., 2007, 693, 567-573; (e) H. C. Malinakova, Top. Organomet. Chem., 2011, 35, 85-110; (f) Y. Ye, N. D. Ball, J. W. Kampf and M. S. Sanford, J. Am. Chem. Soc., 2010, 132, 14682-14687; (g) K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45, 788-802; (h) X.-G. Zhang, H.-X. Dai, M. Wasa and J.-Q. Yu, J. Am. Chem. Soc., 2012, 134, 11948-11951; (i) H. Zhang and A. Lei, Dalton Trans., 2011, 40, 8745-8754.

    3 (a) D. Kalyanai, N. R. Deprez, L. V. Desai and M. S. Sanford, J. Am. Chem. Soc., 2005, 127, 7330-7331; (b) E. W. Kalberer, S. R. Whifield and M. S. Sanford, J. Mol. Catal. A: Chem., 2006, 251, 108-113; (c) N. R. Deprez and M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 11234-11241; (d) A. J. Canty, A. Ariafard, M. S. Sanford and B. F. Yates, Organometallics, 2013, 32, 544-555; (e) A. J. Canty, Dalton Trans., 2009, 10409-10417.

    4 (a) A. J. Canty, J. Patel, T. Rodemann, J. H. Ryan, B. W. Skelton and A. H. White, Organometallics, 2004, 23, 3466-3473; (b) A. Bayler, A. J. Canty, J. H. Ryan, B. W. Skelton and A. H. White, Inorg. Chem. Commun., 2000, 3, 575-578.

    5 K. J. Szabó, J. Mol. Catal. A: Chem., 2010, 324, 56-63.

    6 (a) J. Vicente, M. T. Chicote, J. Martin, M. Artigao, X. Solans, M. Font-Altaba and M. Aguilo, J. Chem. Soc., Dalton Trans., 1988, 141-147; (b) A. J. Canty, S. D. Fritshe, H. Jin, B. W. Skelton and A. H. White, J. Organomet. Chem., 1995, 490, C18-C19; (c) A. J. Canty, H. Jin, A. S. Roberts, B. W. Skelton and A. H. White, Organometallics, 1996, 15, 5713-5722; (d) R. van Belzen, C. J. Elsevier, A. Dedieu, N. Veldman and A. L. Spek, Organometallics, 2003, 22, 722- 13 C. J. Davies, A. Gregory, P. Griffith, T. Perkins, K. Singh and 736; (e) S. R. Whitfield and M. S. Sanford, J. Am. Chem. G. A. Solan, Tetrahedron, 2008, 64, 9857-9864. Soc., 2007, 129, 15141-15143. 14 O. Adeyi, W. B. Cross, G. Forrest, L. Godfrey, E. G.

    7 C-Cl bond forming reductive elimination from Pd(IV) is Hope, A. McLeod, A. Singh, K. Singh, G. A. Solan, Y. considered highly thermodynamically favourable when Wang and L. A. Wright, Dalton Trans., 2013, 42, 7710- compared with the corresponding elimination from Pd(II): 7723. See ref. 1a and A. H. Hoy and J. F. Hartwig, Organometallics, 15 W. B. Cross, E. G. Hope, G. Forrest, K. Singh and 2004, 23, 1533-1541. G. A. Solan, Polyhedron, 2013, 59, 124-132.

    8 (a) M.-C. Lagunas, R. A. Gossage, A. L. Spek and G. van 16 (a) M. Lopez-Torres, P. Juanatey, J. J. Fernandez, Koten, Organometallics, 1998, 17, 731-741; (b) A. J. Canty, A. Fernandez, A. Suarez, D. Vazquez-Garcia and J. M. Vila, M. C. Denney, G. van Koten, B. W. Skelton and A. H. White, Polyhedron, 2002, 21, 2063-2069; (b) H. Onoue and Organometallics, 2004, 23, 5432-5439; (c) L. T. Pilarski, I. Moritani, J. Organomet. Chem., 1972, 43, 431-436; N. Selander, D. Boese and K. J. Szabó, Org. Lett., 2009, 11, (c) H. Onoue, K. Minami and K. Nakagawa, Bull. Chem. Soc. 5518-5521; (d) N. Selander, B. Willy and K. J. Szabó, Angew. Jpn., 1970, 43, 3480-3485. Chem., Int. Ed., 2010, 49, 4051-4053. 17 K. Nakamoto, IR and Raman Spectra of Inorganic and Coordi-

    9 P. L. Alsters, P. F. Engel, M. P. Hogerheide, M. Copijn, nation Compounds, Wiley, New York, 5th edn, 1997, Part B, A. L. Spek and G. van Koten, Organometallics, 1993, 12, p. 271. 1831-1844. 18 (a) E. T. J. Strong, J. T. Price and N. D. Jones, Dalton Trans.,

    10 (a) J. Vicente, A. Arcas, F. Julia-Hernández and D. Bautista, 2009, 9123-9125; (b) D. M. Pearson, N. R. Conley and Chem. Commun., 2010, 46, 7253-7255; (b) J. Vicente, R. M. Waymouth, Organometallics, 2011, 30, 1445- A. Arcas, F. Julia-Hernández and D. Bautista, Inorg. Chem., 1453. 2011, 50, 5339-5341; (c) J. Vicente, A. Arcas, F. Julia- 19 W. L. F. Armarego and D. D. Perrin, in Purification of Hernández and D. Bautista, Angew. Chem., Int. Ed., 2011, Laboratory Chemicals, Butterworth Heinemann, 4th edn, 50, 6896-6899. 1996.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Institutional Repository - IRUS-UK 0 58
Share - Bookmark