Not all low-carbon energy pathways are environmentally “no-regrets” options

Article English OPEN
Konadu, D.Dennis ; Mourão, Zenaida Sobral ; Allwood, Julian M. ; Richards, Keith S. ; Kopec, Grant M. ; McMahon, Richard A. ; Fenner, Richard A. (2015)
  • Publisher: Elsevier BV
  • Journal: Global Environmental Change (issn: 0959-3780, vol: 35, pp: 379-390)
  • Related identifiers: doi: 10.1016/j.gloenvcha.2015.10.002, doi: 10.1016/j.gloenvcha.2015.10.002
  • Subject: Geography, Planning and Development | Land-use change | Water abstraction | Carbon Plan | Environmental no-regrets | TD | Ecology | Global and Planetary Change | Energy–land–water nexus | Management, Monitoring, Policy and Law | HD | Low-carbon energy pathways | GE

Energy system pathways which are projected to deliver minimum possible deployment cost, combined with low Greenhouse Gas (GHG) emissions, are usually considered as ‘no-regrets’ options. However, the question remains whether such energy pathways present ‘no-regrets’ when also considering the wider environmental resource impacts, in particular those on land and water resources. This paper aims to determine whether the energy pathways of the UK’s Carbon Plan are environmental “no-regrets” options, defined in this study as simultaneously exhibiting low impact on land and water services resulting from resource appropriation for energy provision. This is accomplished by estimating the land area and water abstraction required by 2050 under the four pathways of the Carbon Plan with different scenarios for energy crop composition, yield, and power station locations. The outcomes are compared with defined limits for sustainable land appropriation and water abstraction. The results show that of the four Carbon Plan pathways, only the “Higher Renewables, more energy efficiency” pathway is an environmental “no-regrets” option, and that is only if deployment of power stations inland is limited. The study shows that policies for future low-carbon energy systems should be developed with awareness of wider environmental impacts. Failing to do this could lead to a setback in achieving GHG emission reductions goals, because of unforeseen additional competition between the energy sector and demand for land and water services in other sectors. This work has been funded by Engineering and Physical Sciences Research Council (EPSRC) through the Whole System Energy Modelling (wholeSEM) consortium. EPSRC Grant number EP/K039326/1 This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.gloenvcha.2015.10.002
  • References (64)
    64 references, page 1 of 7

    AEA (2011). Pathways to 2050-Detailed Analyses, MARKAL Model Review and Scenarios for DECC's 4th Carbon Budget Evidence Base, Didcot: AEA. Available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/ file/48073/2270-pathways-to-2050-detailed-analyses.pdf (accessed on 29/05/ 2014).

    Allwood, J.M., Kopec, G., Sobral-Mourao, Z., Konadu, D. D., Richards, K., McMahon, R., & Fenner R., (2014). UK Foreseer tool [computer software]. Available at https:// www.foreseer.group.cam.ac.uk/foreseer-tool/.

    Bajželj, B., Richards, K.S., Allwood, J.M., Smith, P., Dennis, J.S., Curmi, E., Gilligan, C.A., 2014. Importance of food-demand management for climate mitigation. N. Clim. Change 4 (10), 924-929. doi:http://dx.doi.org/10.1038/nclimate2353.

    Biomass Energy Centre (BEC) (2007). Planting and Growing Miscanthus:Best Practice Guidelines for applicants to Defra's Energy Crops Scheme. Available at http://www.biomassenergycentre.org.uk/pls/portal/docs/PAGE/ BEC_TECHNICAL/SOURCES%20OF%20BIOMASS/ENERGY%20CROPS/GRASSES% 20AND%20NON-WOODY%20ENERGY%20CROPS/MISCANTHUS/MISCANTHUSGUIDE.PDF (Accessed 2/10/2015).

    Butler, C., Demski, C., Parkhill, K., Pidgeon, N., Spence, A., 2015. Public values for energy futures: framing, indeterminacy and policy making. Energy Policy doi: http://dx.doi.org/10.1016/j.enpol.2015.01.035 (In Press).

    Byers, E.A., Hall, J.W., Amezaga, J.M., 2014. Electricity generation and cooling water use: UK pathways to 2050. Global Environ. Change 25, 16-30. doi:http://dx.doi. org/10.1016/j.gloenvcha.2014.01.005.

    Department of Energy and Climate Change (DECC) (2011). UK Coal mining dataset http://coal.decc.gov.uk/en/coal/cms/publications/mining/mining.aspx (Accessed 09/10/2014).

    Department of Energy and Climate Change (DECC) (2012). DECC 2050 Pathways Calculator version 3.4.1. Available at Department of Energy and Climate Change (DECC) (2013). Energy Consumption in the UK (ECUK) dataset. Available at https://www.gov.uk/government/statistics/energy-consumption-in-the-uk (Accessed 03/06 /2014).

    Department of Energy and Climate Change (DECC) (2013). Energy Consumption in the UK (ECUK) dataset. Available at https://www.gov.uk/government/statistics/ energy-consumption-in-the-uk (Accessed 03/06 /2014).

    Department of Energy and Climate Change (DECC) (2014). Digest of UK Energy Statistics (DUKES) 2013. Available at https://www.gov.uk/government/ collections/digest-of-uk-energy-statistics-dukes#2013 (Accessed 09/10/2014).

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark