Estimating the false discovery rate using the stochastic approximation algorithm

Article English OPEN
Zhang, Jian ; Liang, Faming (2008)
  • Publisher: Oxford
  • Journal: Biometrika, volume 95, issue 4, pages 961-977
  • Related identifiers: doi: 10.1093/biomet/asn036
  • Subject: QA | QA276

Testing of multiple hypotheses involves statistics that are strongly dependent in some applications, but most work on this subject is based on the assumption of independence. We propose a new method for estimating the false discovery rate of multiple hypothesis tests, in which the density of test scores is estimated parametrically by minimizing the Kullback--Leibler distance between the unknown density and its estimator using the stochastic approximation algorithm, and the false discovery rate is estimated using the ensemble averaging method. Our method is applicable under general dependence between test statistics. Numerical comparisons between our method and several competitors, conducted on simulated and real data examples, show that our method achieves more accurate control of the false discovery rate in almost all scenarios. Copyright 2008, Oxford University Press.
  • References (33)
    33 references, page 1 of 4

    ALLISON, D. B., GADBURY, G. L., HEO, M., FERNANDEZ, J. R., Lee, C. K., PROLLA, T. A. & WEINDRUCH, R. (2002). A mixture model approach for the analysis of microarray gene expression data. Comp. Statist. Data Anal. 39, 1- 20.

    BENJAMINI, Y. & HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289-300.

    BENJAMINI, Y., KRIEGER, A. M. & YEKUTIELI, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491-507.

    BENJAMINI, Y. & LIU, W. (1999). A step-down multiple hypothesis procedure that controls the false discovery rate under independence. J. Statist. Plan. Infer. 82, 163-70.

    BENJAMINI, Y. & YEKUTIELI, D. (2001). On the control of false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165-88.

    BENJAMINI, Y. & YEKUTIELI, D. (2005). False discovery rate-adjusted multiple confidence intervals for selected parameters (with Discussion). J. Am. Statist. Assoc. 100, 71-93.

    BORDES, L., DELMAS, C. & VANDEKERKHOVE, P. (2006). Semiparametric estimation of a two-component mixture model where one component is known. Scand. J. Statist. 33, 733-53.

    CHEN, H. F. (1998). Stochastic approximation with non-additive measurement noise. J. Appl. Prob. 35, 407- 17.

    COOK, R. D. & WEISBERG, S. (1982). Residuals and Influence in Regression. New York: Chapman and Hall.

    DO, K. A., MU¨ LLER, P. & TANG, F. (2005). A Bayesian mixture model for differential gene expression. Appl. Statist. 54, 627-44.

  • Metrics
    No metrics available
Share - Bookmark