Share  Bookmark

 Download from



ALLISON, D. B., GADBURY, G. L., HEO, M., FERNANDEZ, J. R., Lee, C. K., PROLLA, T. A. & WEINDRUCH, R. (2002). A mixture model approach for the analysis of microarray gene expression data. Comp. Statist. Data Anal. 39, 1 20.
BENJAMINI, Y. & HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289300.
BENJAMINI, Y., KRIEGER, A. M. & YEKUTIELI, D. (2006). Adaptive linear stepup procedures that control the false discovery rate. Biometrika 93, 491507.
BENJAMINI, Y. & LIU, W. (1999). A stepdown multiple hypothesis procedure that controls the false discovery rate under independence. J. Statist. Plan. Infer. 82, 16370.
BENJAMINI, Y. & YEKUTIELI, D. (2001). On the control of false discovery rate in multiple testing under dependency. Ann. Statist. 29, 116588.
BENJAMINI, Y. & YEKUTIELI, D. (2005). False discovery rateadjusted multiple confidence intervals for selected parameters (with Discussion). J. Am. Statist. Assoc. 100, 7193.
BORDES, L., DELMAS, C. & VANDEKERKHOVE, P. (2006). Semiparametric estimation of a twocomponent mixture model where one component is known. Scand. J. Statist. 33, 73353.
CHEN, H. F. (1998). Stochastic approximation with nonadditive measurement noise. J. Appl. Prob. 35, 407 17.
COOK, R. D. & WEISBERG, S. (1982). Residuals and Influence in Regression. New York: Chapman and Hall.
DO, K. A., MUÂ¨ LLER, P. & TANG, F. (2005). A Bayesian mixture model for differential gene expression. Appl. Statist. 54, 62744.