Challenges of measuring body temperatures of free-ranging birds and mammals

Article English OPEN
McCafferty, D.J. ; Gallon, S. ; Nord, A. (2015)

The thermal physiology of most birds and mammals is characterised by considerable spatial and temporal variation in body temperature. Body temperature is, therefore, a key parameter in physiological, behavioural and ecological research. Temperature measurements on freely moving or free-ranging animals in the wild are challenging but can be undertaken using a range of techniques. Internal temperature may be sampled using thermometry, surgically implanted loggers or transmitters, gastrointestinal or non-surgically placed devices. Less invasive approaches measure peripheral temperature with subcutaneous passive integrated transponder tags or skin surface-mounted radio transmitters and data loggers, or use infrared thermography to record surface temperature. Choice of technique is determined by focal research question and region of interest that reflects appropriate physiological or behavioural causal mechanisms of temperature change, as well as welfare and logistical considerations. Particularly required are further studies that provide opportunities of continuously sampling from multiple sites from within the body. This will increase our understanding of thermoregulation and temperature variation in different parts of the body and how these temperatures may change in response to physiological, behavioural and environmental parameters. Technological advances that continue to reduce the size and remote sensing capability of temperature recorders will greatly benefit field research.
  • References (113)
    113 references, page 1 of 12

    1. Randall D, Burggren W, French K. Eckert animal physiology: mechanisms and adaptations. Eckert animal physiology: mechanisms and adaptations, vol. 4. 1997.

    2. Hofmann AA, Chown SL, Clusella-Trullas S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol. 2013;27(4):934-49. doi:10.1111/j.1365-2435.2012.02036.x.

    3. Duman JG. An early classic study of freeze avoidance in marine fish. J Exp Biol. 2014;217(6):820-3. doi:10.1242/jeb.092239.

    4. Clarke A, Portner H-O. Temperature, metabolic power and the evolution of endothermy. Biol Rev. 2010;85(4):703-27. doi:10.1111/j.1469-185X.2010.00122.x.

    5. Clarke A, Rothery P. Scaling of body temperature in mammals and birds. Funct Ecol. 2008;22(1):58-67. doi:10.1111/j.1365-2435.2007.01341.x.

    6. Barnes BM. Freeze avoidance in a mammal-body temperatures below 0 degrees C in an arctic hibernator. Science. 1989;244(4912):1593-5. doi:10.1126/science.2740905.

    7. Khaliq I, Hof C, Prinzinger R, Boehning-Gaese K, Pfenninger M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc R Soc B Biol Sci. 2014;281(1789). doi:10.1098/ rspb.2014.1097.

    8. Sunday JM, Bates AE, Dulvy NK. Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc B Biol Sci. 2011;278(1713):1823-30. doi:10.1098/rspb.2010.1295.

    9. Yahav S. Regulation of body temperature: strategies and mechanisms, chapter 37. In: Scanes CG, editor. Sturkie's avian physiology. 6th ed. San Diego: Academic Press; 2015. p. 869-905.

    10. Taylor NAS, Tipton MJ, Kenny GP. Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol. 2014;46:72- 101. doi:10.1016/j.jtherbio.2014.10.006.

  • Metrics
    No metrics available
Share - Bookmark