Share  Bookmark

 Download from



 Funded by

Abbott, J. T., & Griffiths, T. L. (2011). Exploring the influence of particle filter parameters on order effects in causal learning. In Proceedings of the 33rd annual conference of the cognitive science society.
Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409429.
Beck, J., Pouget, A., & Heller, K. A. (2012). Complex inference in neural circuits with probabilistic population codes and topic models. In F. Pereira, C. Burges, L. Bottou, & K. Weinberger (Eds.). Advances in neural information processing systems (Vol. 25, pp. 30593067). Curran Associates, Inc.
Bishop, C. M. (2006). Pattern recognition and machine learning. New York, NY: Springer.
Brown, S. D., & Steyvers, M. (2009). Detecting and predicting changes. Cognitive Psychology, 58, 4967.
Buesing, L., Bill, J., Nessler, B., & Maass, W. (2011). Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons. PLoS Computational Biology, 7(11), e1002211.
Daw, N. D., & Courville, A. C. (2008). The pigeon as particle filter. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.). Advances in neural information processing systems (Vol. 20, pp. 369376). Cambridge, MA: MIT Press.
Daw, N. D., Courville, A. C., & Dayan, P. (2008). Semirational models of conditioning: The case of trial order. In N. Chater & M. Oaksford (Eds.), The probabilistic mind (pp. 431452). Oxford, UK: Oxford University Press.
Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in practice. New York: Springer.
Fiser, J., Berkes, P., Orbán, G., & Lengyel, M. (2010). Statistically optimal perception and learning: From behavior to neural representations. Trends in Cognitive Sciences, 14, 119130.