A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays

Article English OPEN
Lei, Ka-Meng ; Heidari, Hadi ; Mak, Pui-In ; Law, Man-Kay ; Maloberti, Franco ; Martins, Rui P. (2017)

We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x).
  • References (47)
    47 references, page 1 of 5

    [1] G. Gauglitz, “Point-of-care platforms,” Annu. Rev. Anal. Chem., vol. 7, pp. 297-315, Jun. 2014.

    [2] P. Neužil, C. D. M. Campos, C. C. Wong, J. B. W. Soon, J. Reboud, and A. Manz, “From chip-in-a-lab to lab-on-a-chip: towards a single handheld electronic system for multiple application-specific lab-on-achip (ASLOC),” Lab Chip, vol. 14, no. 13, pp. 2168-2176, Jul. 2014.

    [3] H. Shafiee, S. Wang, F. Inci, M. Toy, T. J. Henrich, D. R. Kuritzkes, and U. Demirci, “Emerging technologies for point-of-care management of HIV infection,” Annu. Rev. Med., vol. 66, pp. 387-405, Jan. 2015.

    [4] World Health Organization. Major causes of death [online]. Available: http://www.who.int/mediacentre/factsheets/fs310/en/index2.html [5] J. P. Lafleur, A. Jönsson, S. Senkbeil, and J. P. Kutter, “Recent advances in lab-on-a-chip for biosensing applications,” Biosens. Bioelectron., vol. 76, pp. 213-233, Feb. 2016.

    [6] M. Zuiderwijk, H. J. Tanke, R. S. Niedbala, and P. L. A. M. Corstjens, “An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology,” Clin. Biochem., vol. 36, no. 5, pp. 401-403, Jul. 2003.

    [7] G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. Chem., vol. 393, no. 2, pp. 569-582, Jan. 2009.

    [8] S. K. Arya, C. C. Wong, Y. J. Jeon, T. Bansal, and M. K. Park, “Advances in complementary-metal-oxidesemiconductor-based integrated biosensor arrays,” Chem. Rev., vol. 115, no. 11, pp. 5116-5158, Jun. 2015.

    [9] H. J. Yoo and C. van Hoof, Bio-Medical CMOS ICs. New York: Springer, 2011.

    [10] B. Jang, P. Cao, A. Chevalier, A. Ellington, and A. Hassibi, “A CMOS fluorescent-based biosensor microarray,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2009, pp. 436-437.

    [11] K.-H. Lee, S. Choi, J. O. Lee, J.-B. Yoon, and G.-H. Cho, “CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2012, pp. 120-121.

  • Metrics
    No metrics available
Share - Bookmark