Performance of optimised prosthetic ankle designs that are based on a hydraulic variable displacement actuator (VDA)

Article English OPEN
Gardiner, James; Bari, Abu Zeeshan; Kenney, Laurence; Twiste, Martin; Moser, David; Zahedi, Saeed; Howard, David;

Current energy storage and return (ESR) prosthetic\ud feet only marginally reduce the cost of amputee locomotion\ud compared to basic solid ankle cushioned heel (SACH) feet,\ud possibly due to their lack of push-off at the end of stance. To our knowledge, a prosthetic a... View more
  • References (34)
    34 references, page 1 of 4

    [1] L. J. Mengelkoch, J. T. Kahle, and M. J. Highsmith, “Energy costs & performance of transtibial amputees & non-amputees during walking & running,” Int. J. Sports Med., vol. 35, no. 14, pp. 1223-1228, Aug. 2014.

    [2] T. Schmalz, S. Blumentritt, and R. Jarasch, “Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components.,” Gait Posture, vol. 16, no. 3, pp. 255-63, Dec. 2002.

    [3] D. H. Nielsen, D. G. Shurr, J. C. Golden, and K. Meier, “Comparison of energy cost and gait efficiency during ambulation in below-knee amputees using different prosthetic feet - a preliminary report,” JPO J. Prosthetics Orthot., vol. 1, no. 1, pp. 24-31, 1988.

    [4] J. J. Genin, G. J. Bastien, B. Franck, C. Detrembleur, and P. Willems, “Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees.,” Eur. J. Appl. Physiol., vol. 103, no. 6, pp. 655- 63, Aug. 2008.

    [5] C. Hofstad, H. Linde, J. Limbeek, and K. Postema, “Prescription of prosthetic ankle-foot mechanisms after lower limb amputation.,” Cochrane database Syst. Rev., no. 1, p. CD003978, Jan. 2004.

    [6] J. Gardiner, A. Z. Bari, D. Howard, and L. Kenney, “Energy storage and return prosthetic feet have only marginally improved trans-tibial amputee gait efficiency compared to that with solid ankle cushioned heel feet,” J. Rehabil. Res. Dev., vol. 53, no. 6, pp. 1133-1138, 2016.

    [7] S. Lipfert, M. Günther, D. Renjewski, and A. Seyfarth, “Impulsive ankle push-off powers leg swing in human walking,” J. Exp. Biol., vol. 217, pp. 1218-1228, Dec. 2013.

    [8] K. E. Zelik, T.-W. P. Huang, P. G. Adamczyk, and A. D. Kuo, “The role of series ankle elasticity in bipedal walking.,” J. Theor. Biol., vol. 346, pp. 75-85, Apr. 2014.

    [9] A. Ruina, J. E. A. Bertram, and M. Srinivasan, “A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition,” J. Theor. Biol., vol. 237, no. 2, pp. 170-192, 2005.

    [10] K. Postema, H. Hermens, J. de Vries, H. Koopman, and W. Eisma, “Energy storage and release of prosthetic feet Part 1: Biomechanical analysis related to user benefits,” Prosthet. Orthot. Int., vol. 21, no. 1, pp. 17-27, 1997.

  • Related Research Results (2)
  • Metrics
Share - Bookmark