Periodic orbits from Δ-modulation of stable linear systems

Article English OPEN
Xia, X.; Zinober, A.;
  • Publisher: Institute of Electrical and Electronics Engineers

The �-modulated control of a single input, discrete time, linear stable system is investigated. The modulation direction is given by cTx where c �Rn/{0} is a given, otherwise arbitrary, vector. We obtain necessary and sufficient conditions for the existence of period... View more
  • References (18)
    18 references, page 1 of 2

    [1] S. Ariyavisitakul and L. Chang, “Simulation of a CDMA system performance with feed-back power control,” Electron. Lett., vol. 27, pp. 2127-2128, 1991.

    [2] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization. Belmont, MA: Athena Scientific, 1997.

    [3] C. I. Byrnes and A. Isidori, “Local stabilization of minimum phase nonlinear systems,” Syst. Control Lett., vol. 11, pp. 9-17, 1988.

    [4] V. Chothi, G. Everest, and T. Ward, “S-integer dynamical systems: Periodic points,” J. für die Riene Angew. Math., vol. 489, pp. 99-132, 1997.

    [5] R. Gai, X. Xia, and G. Chen, “Complex dynamics of systems under delta-modulated control,” Dept. Elect., Electron., Comput. Eng., Univ. Pretoria, Pretoria, South Africa, Tech. Rep., Mar. 2003.

    [6] B. Hao, “Number of periodic orbits in continuous maps of the interval-Complete solution of the counting problem,” Ann. Combinatorics, vol. 4, pp. 339-346, 2000.

    [7] P. Hartman, Ordinary Differential Equations, 2nd ed. New York: Wiley, 1973.

    [8] M. Johansson and A. Rantzer, “Computation of piecewise quadratic Lyapunov functions for hybrid systems,” IEEE Trans. Automat. Contr., vol. 43, pp. 555-559, Apr. 1998.

    [9] T. Kailath, Linear Systems. Upper Saddle River, NJ: Prentice-Hall, 1980.

    [10] A. N. Sarkovskii, “Coexistence of cycle of a continuous map of a line into itself,” Ukr. Mat. Z., vol. 16, pp. 61-71, 1964.

  • Metrics
Share - Bookmark