publication . Article . 2010

Modeling and computation of two phase geometric biomembranes using surface finite elements

Elliott, Charles M.; Stinner, Björn;
Open Access
  • Published: 01 Sep 2010 Journal: Journal of Computational Physics, volume 229, pages 6,585-6,612 (issn: 0021-9991, Copyright policy)
  • Publisher: Elsevier BV
  • Country: United Kingdom
Biomembranes consisting of multiple lipids may involve phase separation phenomena leading to coexisting domains of different lipid compositions. The modeling of such biomembranes involves an elastic or bending energy together with a line energy associated with the phase interfaces. This leads to a free boundary problem for the phase interface on the unknown equilibrium surface which minimizes an energy functional subject to volume and area constraints. In this paper we propose a new computational tool for computing equilibria based on an L^2 relaxation flow for the total energy in which the line energy is approximated by a surface Ginzburg-Landau phase field fun...
free text keywords: Curvature, Finite element method, Mean curvature, Free boundary problem, Discretization, Nonlinear system, Energy functional, Mathematical analysis, Mathematical optimization, Mathematics, Quadratic equation, QA, QP
Related Organizations
31 references, page 1 of 3

[1] D. Andelman, T. Kawakatsu, and K. Kawasaki, Equilibrium shape of two-component unilamellar membranes and vesicles, Europhys. Lett., 19 (1992), pp. 57-62. [OpenAIRE]

[2] J. W. Barrett, H. Garcke, and R. Nu¨rnberg, Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput., 31 (2008), pp. 225-253. [OpenAIRE]

[3] T. Baumgart, S. Hess, and W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, 425 (2003), pp. 821-824.

[4] T. Baumgart, S. L. Das, W. Webb, and J. Jenkin, Membrane elasticity in giant vesicles with fluid phase coexistence, Biophys. J., 89 (2005), pp. 1067-1084.

[5] T. Biben and C. Misbah, Tumbling of vesicles under shear flow within an advected-field approach, Phys. Rev. E, 67 (2003), pp. 031908-1-5. [OpenAIRE]

[6] T. Biben, K. Kassner, and C. Misbah, Phase-field approach to threedimensional vesicle dynamics, Phys. Rev. E, 72 (2005), pp. 041921-1-15. [OpenAIRE]

[7] M. Bloor and M. Wilson, Method for efficient shape parametrization of fluid membranes and vesicles, Phys. Rev. E, 61 (2000), pp. 4218-4229. [OpenAIRE]

[8] A. Bobenko and P. Schro¨der, Discrete Willmore flow, in Eurographics Symp. Geom. Processing, M. Desbrun and H. Pottmann, eds., 2005. [OpenAIRE]

[9] A. Bonito, R. H. Nochetto, and M. S. Pauletti, Parametric FEM for geometric biomembranes, J. Comp. Phys., (submitted) (2009).

[10] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, no. 15 in Texts in Applied Mathematics, Springer, third ed., 2007.

[12] T. A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30 (2004), pp. 196-199.

[13] K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numerica, 14 (2005), pp. 139-232.

[14] A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal., 47 (2009), pp. 805-827. [OpenAIRE]

[15] Q. Du, C. Liu, and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comp. Phys., 198 (2004), pp. 450-468.

[16] , Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comp. Phys., 212 (2006), pp. 757-777.

31 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2010

Modeling and computation of two phase geometric biomembranes using surface finite elements

Elliott, Charles M.; Stinner, Björn;