31 references, page 1 of 4 [1] D. Andelman, T. Kawakatsu, and K. Kawasaki, Equilibrium shape of two-component unilamellar membranes and vesicles, Europhys. Lett., 19 (1992), pp. 57-62.

[2] J. W. Barrett, H. Garcke, and R. Nu¨rnberg, Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput., 31 (2008), pp. 225-253.

[3] T. Baumgart, S. Hess, and W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, 425 (2003), pp. 821-824.

[4] T. Baumgart, S. L. Das, W. Webb, and J. Jenkin, Membrane elasticity in giant vesicles with fluid phase coexistence, Biophys. J., 89 (2005), pp. 1067-1084.

[5] T. Biben and C. Misbah, Tumbling of vesicles under shear flow within an advected-field approach, Phys. Rev. E, 67 (2003), pp. 031908-1-5.

[6] T. Biben, K. Kassner, and C. Misbah, Phase-field approach to threedimensional vesicle dynamics, Phys. Rev. E, 72 (2005), pp. 041921-1-15.

[7] M. Bloor and M. Wilson, Method for efficient shape parametrization of fluid membranes and vesicles, Phys. Rev. E, 61 (2000), pp. 4218-4229.

[8] A. Bobenko and P. Schro¨der, Discrete Willmore flow, in Eurographics Symp. Geom. Processing, M. Desbrun and H. Pottmann, eds., 2005.

[9] A. Bonito, R. H. Nochetto, and M. S. Pauletti, Parametric FEM for geometric biomembranes, J. Comp. Phys., (submitted) (2009).

[10] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, no. 15 in Texts in Applied Mathematics, Springer, third ed., 2007.