Share  Bookmark

 Download from


[1] D. Andelman, T. Kawakatsu, and K. Kawasaki, Equilibrium shape of twocomponent unilamellar membranes and vesicles, Europhys. Lett., 19 (1992), pp. 5762.
[2] J. W. Barrett, H. Garcke, and R. Nu¨rnberg, Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput., 31 (2008), pp. 225253.
[3] T. Baumgart, S. Hess, and W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, 425 (2003), pp. 821824.
[4] T. Baumgart, S. L. Das, W. Webb, and J. Jenkin, Membrane elasticity in giant vesicles with fluid phase coexistence, Biophys. J., 89 (2005), pp. 10671084.
[5] T. Biben and C. Misbah, Tumbling of vesicles under shear flow within an advectedfield approach, Phys. Rev. E, 67 (2003), pp. 03190815.
[6] T. Biben, K. Kassner, and C. Misbah, Phasefield approach to threedimensional vesicle dynamics, Phys. Rev. E, 72 (2005), pp. 041921115.
[7] M. Bloor and M. Wilson, Method for efficient shape parametrization of fluid membranes and vesicles, Phys. Rev. E, 61 (2000), pp. 42184229.
[8] A. Bobenko and P. Schro¨der, Discrete Willmore flow, in Eurographics Symp. Geom. Processing, M. Desbrun and H. Pottmann, eds., 2005.
[9] A. Bonito, R. H. Nochetto, and M. S. Pauletti, Parametric FEM for geometric biomembranes, J. Comp. Phys., (submitted) (2009).
[10] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, no. 15 in Texts in Applied Mathematics, Springer, third ed., 2007.
The information is available from the following content providers:
From  Number Of Views  Number Of Downloads 

Warwick Research Archives Portal Repository  IRUSUK  0  54 