An hr-adaptive discontinuous Galerkin method for advection-diffusion problems

Article English OPEN
Antonietti, Paola F. ; Houston, Paul (2009)
  • Publisher: Open Journals Systems
  • Subject:
    acm: ComputingMethodologies_COMPUTERGRAPHICS
    arxiv: Mathematics::Numerical Analysis | Computer Science::Graphics

We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre-processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection-diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed discretization error by clustering the nodes in the computational mesh where the analytical solution undergoes rapid variation.
  • References (11)
    11 references, page 1 of 2

    1. M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg., 142(1-2):1-88, 1997.

    2. P. F. Antonietti and P. Houston. A pre-processing moving mesh method for discontinuous Galerkin approximations of advectiondiffusion-reaction problems. Int. J. Numer. Anal. Model., 5(4):704-728, 2008.

    3. D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749-1779 (electronic), 2001/02.

    4. A. S. Dvinsky. Adaptive grid generation from harmonic maps on riemannian manifolds. J. Comput. Phys., 95:45-476, 1991.

    5. E. Georgoulis, E. Hall, and P. Houston. Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes. SIAM J. Sci. Comput., 30(1):246-271, 2007.

    6. P. Houston and E. Su¨li. hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM J. Sci. Comput., 23(4):1226-1252, 2001.

    7. R. Li, W. Liu, T. Tang, and P. Zhang. Moving mesh finite element methods based on harmonic maps. In Scientific computing and applications (Kananaskis, AB, 2000), volume 7 of Adv. Comput. Theory Pract., pages 143-156. Nova Sci. Publ., Huntington, NY, 2001.

    8. R. Li, T. Tang, and P. Zhang. Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys., 170(2):562-588, 2001.

    9. C. Schwab. p- and hp-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics.

    10. E. Su¨li, P. Houston, and C. Schwab. hp-finite element methods for hyperbolic problems. In The mathematics of finite elements and applications, X, MAFELAP 1999 (Uxbridge), pages 143-162. Elsevier, Oxford, 2000.

  • Metrics
    No metrics available
Share - Bookmark