Interpreting nowhere dense graph classes as a classical notion of model theory
 Publisher: Elsevier

Subject:acm: MathematicsofComputing_DISCRETEMATHEMATICS

References
(15)
15 references, page 1 of 2
 1
 2
[1] Hans Adler. Introduction to theories without the independence property. Arch. Math. Log. accepted.
[2] Anuj Dawar. Finite model theory on tame classes of structures. In Ludek Kuˇcera and Anton´ın Kuˇcera, editors, MFCS, volume 4708 of Lect. Notes Comput. Sc., pages 212. Springer, 2007.
[3] Anuj Dawar. Homomorphism preservation on quasiwide classes. J. Comput. Syst. Sci., 76(5):324332, 2010.
[4] Anuj Dawar and Stephan Kreutzer. Domination problems in nowheredense classes. In Ravi Kannan and K. Narayan Kumar, editors, FSTTCS, volume 4 of LIPIcs, pages 157168. Schloss Dagstuhl  LeibnizZentrum fu¨r Informatik, 2009.
[5] Reinhard Diestel. Graph Theory, volume 173 of Grad. Texts in Math. Springer, 2005.
[6] Doug Ensley and Rami Grossberg. Finite models, stability, and Ramsey's theorem, 1996.
[7] Martin Grohe and Gy¨orgy Tur´an. Learnability and definability in trees and similar structures. Theory Comput. Syst., 37(1):193 220, 2004.
[8] Heinrich Herre, Alan H. Mekler, and Kenneth W. Smith. Superstable graphs. Fund. Math., 118:7579, 1983.
[9] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.
[10] M. Chris Laskowski. VapnikChervonenkis classes of definable sets. J. London Math. Soc. (2), 45:377384, 1992.

Metrics
0views in OpenAIRE0views in local repository30downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads White Rose Research Online  IRUSUK 0 30

 Download from


Cite this publication