Thermally Stable Solution Processed Vanadium Oxide as a Hole Extraction Layer in Organic Solar Cells

Article English OPEN
Alsulami, Abdullah ; Griffin, Jonathan ; Alqurashi, Rania ; Yi, Hunan ; Iraqi, Ahmed ; Lidzey, David ; Buckley, Alastair (2016)
  • Publisher: MDPI
  • Journal: Materials, volume 9, issue 4 (eissn: 1996-1944)
  • Related identifiers: doi: 10.3390/ma9040235, pmc: PMC5502882
  • Subject: photoelectron spectroscopy | solution processing | vanadium oxide | organic photovoltaic | thermal stability | Article

Low-temperature solution-processable vanadium oxide (V2Ox) thin films have been employed as hole extraction layers (HELs) in polymer bulk heterojunction solar cells. V2Ox films were fabricated in air by spin-coating vanadium(V) oxytriisopropoxide (s-V2Ox) at room temperature without the need for further thermal annealing. The deposited vanadium(V) oxytriisopropoxide film undergoes hydrolysis in air, converting to V2Ox with optical and electronic properties comparable to vacuum-deposited V2O5. When s-V2Ox thin films were annealed in air at temperatures of 100 °C and 200 °C, OPV devices showed similar results with good thermal stability and better light transparency. Annealing at 300 °C and 400 °C resulted in a power conversion efficiency (PCE) of 5% with a decrement approximately 15% lower than that of unannealed films; this is due to the relative decrease in the shunt resistance (Rsh) and an increase in the series resistance (Rs) related to changes in the oxidation state of vanadium.
  • References (45)
    45 references, page 1 of 5

    9. Arias, A.C.; Granstrom, M.; Thomas, D.S.; Petritsch, K.; Friend, R.H. Doped conducting-polymer -semiconducting-polymer interfaces: Their use in organic photovoltaic devices. Phys. Rev. B 1999, 60, 1854-1860. [CrossRef]

    10. Ko, C.J.; Lin, Y.K.; Chen, F.C.; Chu, C.W. Modified buffer layers for polymer photovoltaic devices. Appl. Phys. Lett. 2007, 90. [CrossRef]

    11. Lee, K.; Kim, J.Y.; Park, S.H.; Kim, S.H.; Cho, S.; Heeger, A.J. Air-stable polymer electronic devices. Adv. Mater. 2007, 19. [CrossRef]

    12. Norrman, K.; Madsen, M.V.; Gevorgyan, S.A.; Krebs, F.C. Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 2010, 132, 16883-16892. [CrossRef] [PubMed]

    13. Ratcliff, E.L.; Zacher, B.; Armstrong, N.R. Selective inter layers and contacts in organic photovoltaic cells. J. Phys. Chem. Lett. 2011, 2, 1337-1350. [CrossRef] [PubMed]

    14. De Jong, M.P.; van Ijzendoorn, L.J.; de Voigt, M.J.A. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 2000, 77, 2255-2257. [CrossRef]

    15. Shrotriya, V.; Li, G.; Yao, Y.; Chu, C.W.; Yang, Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 2006, 88. [CrossRef]

    16. Park, J.H.; Lee, T.W.; Chin, B.D.; Wang, D.H.; Park, O.O. Roles of interlayers in efficient organic photovoltaic devices. Macromol. Rapid Commun. 2010, 31, 2095-2108. [CrossRef] [PubMed]

    17. Chen, S.; Manders, J.R.; Tsang, S.W.; So, F. Metal oxides for interface engineering in polymer solar cells. J. Mater. Chem. 2012, 22, 24202-24212. [CrossRef]

    18. Wang, H.Q.; Li, N.; Guldal, N.S.; Brabec, C.J. Nanocrystal V2O5 thin film as hole-extraction layer in normal architecture organic solar cells. Org. Electron. 2012, 13, 3014-3021. [CrossRef]

  • Metrics
    No metrics available
Share - Bookmark