Share  Bookmark

 Download from



 Funded by

[1] W. CrawleyBoevey. Lectures on representations of quivers. available at www.maths.leeds.ac.uk/ pmtwc/quivlecs.pdf.
[2] H. Derksen and J. Weyman. Quiver representations. Notices Amer. Math. Soc, 52:200{206, 2005.
[3] Alistair Savage. Finite dimensional algebras and quivers. Encyclopedia of Mathematical Physics, 2:313{ 320, 2005.
[4] Michel Brion. Representations of quivers. Notes de l' ecole d' ete \Geometric Methods in Representation Theory", 2008.
[5] Ibrahim Assem, Andrzej Skowronski, and Daniel Simson. Elements of Representation Theory of Associative Algebras, Vol. 1. Cambridge University Press, 2006.
[6] Michael R. Douglas and Gregory W. Moore. Dbranes, quivers, and ale instantons. 1996.
[7] Sergio Benvenuti and Amihay Hanany. New results on superconformal quivers. JHEP, 0604:032, 2006.
[8] YangHui He. Some remarks on the nitude of quiver theories. In.J.Math.Math.Sci., 1999.
[9] Amihay Hanany and YangHui He. NonAbelian nite gauge theories. JHEP, 9902:013, 1999.
[10] David Berenstein and Samuel Pinansky. The Minimal Quiver Standard Model. Phys.Rev., D75:095009, 2007.