Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: Wind shear theory examination

Article English OPEN
Chu, YH ; Wang, CY ; Wu, KH ; Chen, KT ; Tzeng, KJ ; Su, CL ; Feng, W ; Plane, JMC (2014)
  • Publisher: American Geophysical Union (AGU) / Wiley
  • Subject:
    arxiv: Physics::Geophysics | Physics::Atmospheric and Oceanic Physics | Physics::Space Physics

On the basis of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)-measured fluctuations in the signal-to-noise ratio and excess phase of the GPS signal piercing through ionospheric sporadic E (Es) layers, the general morphologies of these layers are presented for the period from July 2006 to May 2011. It is found that the latitudinal variation in the Es layer occurrence is substantially geomagnetically controlled, most frequent in the summer hemisphere within the geomagnetic latitude region between 10° and 70° and very rare in the geomagnetic equatorial zone. Model simulations show that the summer maximum (winter minimum) in the Es layer occurrence is very likely attributed to the convergence of the Fe+ concentration flux driven by the neutral wind. In addition to seasonal and spatial distributions, the height-time variations in the Es layer occurrence in the midlatitude (>30°) region in summer and spring are primarily dominated by the semidiurnal tides, which start to appear at local time around 6 and 18-h in the height range 110-120-km and gradually descend at a rate of about 0.9-1.6-km/h. In the low-latitude (<30°) region, the diurnal tide dominates. The Horizontal Wind Model (HWM07) indicates that the height-time distribution of Es layers at middle latitude (30°-60°) is highly coincident with the zonal neutral wind shear. However, Es layer occurrences in low-latitude and equatorial regions do not correlate well with the zonal wind shear. Key Points Examination of Es layer summer maximum phenomenon Global distribution of COSMIC-retrieved Es layer Es layer formation and wind shear mechanism.
  • References (19)
    19 references, page 1 of 2

    Abdu, M. A., I. S. Batista, P. Muralikrishna, and J. H. A. Sobral (1996), Long term trends in sporadic E layers and electric fields over Fortaleza, Brazil, Geophys. Res. Lett., 23, 757-760.

    Arras, C., J. Wickert, G. Beyerle, S. Heise, T. Schmid, and C. Jacobi (2008), A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophys. Res. Lett., 35, L14809, doi:10.1029/2008GL034158.

    Ritchie, S. E., and F. Honary (2009), Observations on the variability and screening effect of sporadic E, J. Atmos. Sol. Terr. Phys., 71, 1353-1364.

    Roddy, P. A., G. D. Earle, C. M. Swenson, C. G. Carlson, and T. W. Bullett (2004), Relative concentrations of molecular and metallic ions in midlatitude intermediate and sporadic E layers, Geophys. Res. Lett., 31, L19807, doi:10.1029/2004GL020604.

    Tsuda, T., and K. Hocke (2004), Application of GPS radio occultation data for studies of atmospheric waves in the middle atmosphere and ionosphere, J. Meteorol. Soc. Jpn., 82, 419-426.

    Tsuda, T., M. Nishida, C. Rocken, and R. H. Ware (2000), A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET), J. Geophys. Res., 105, 7257-7273.

    Tsunoda, R.T. (2008), On blanketing sporadic E and polarization effects near the equatorial electrojet, J. Geophys. Res., 113, A09304, doi:10.1029/2008JA013158.

    Vondrak, T., J. M. C. Plane, S. L. Broadley, and D. Janches (2008), A chemical model of meteoric ablation, Atmos. Chem. Phys., 8, 7015-7031.

    Wang, C. Y., Y. H. Chu, C. L. Su, R. M. Kuong, H. C. Chen, and K. F. Yang (2011), Statistical investigations of layer-type and clump-type plasma structures of 3-m field-aligned irregularities in nighttime sporadic E region made with Chung-Li VHF radar, J. Geophys. Res., 116, A12311, doi:10.1029/2011JA016696.

    Wang, L., and M. J. Alexander (2010), Global estimates of gravity wave parameters from GPS radio occultation temperature data, J. Geophys. Res., 115, D21122, doi:10.1029/2010JD013860.

  • Metrics
    No metrics available
Share - Bookmark