Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers

Article English OPEN
Mendecki, Lukasz ; Callan, Nicole ; Ahern, Meghan ; Schazmann, Benjamin ; Radu, Aleksandar (2016)
  • Publisher: MDPI
  • Journal: Sensors (Basel, Switzerland) (vol: 16)
  • Related identifiers: doi: 10.3390/s16071106, pmc: PMC4969841
  • Subject: selectivity | QD | potentiometric sensors | ion-exchange membrane | ionic liquids | Article

The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.
  • References (35)
    35 references, page 1 of 4

    1. Coll, C.; Labrador, R.H.; Mañez, R.M.; Soto, J.; Sancenón, F.; Seguí, M.-J.; Sanchez, E. Ionic liquids promote selective responses towards the highly hydrophilic anion sulfate in PVC membrane ion-selective electrodes. Chem. Commun. 2005, 3033-3035. [CrossRef] [PubMed]

    2. Hofmeister, F. Zur lehre von der wirkung der salze. Arch. Exp. Pathol. Pharmakol. 1888, 25, 1-30. (In German) [CrossRef]

    3. Chatterjee, S.; Bryan, S.A.; Seliskar, C.J.; Heineman, W.R. Three-component spectroelectrochemical sensor module for the detection of pertechnetate (TcO4 ). Rev. Anal. Chem. 2013, 32, 209-224. [CrossRef]

    4. Schroll, C.A.; Chatterjee, S.; Heineman, W.R.; Bryan, S.A. Semi-infinite linear diffusion spectroelectrochemistry on an aqueous micro-drop. Anal. Chem. 2011, 83, 4214-4219. [CrossRef] [PubMed]

    5. Morris, L.K.; Seliskar, C.J.; Bryan, S.A.; Heineman, W.R.; Burgess, D.; Owen, G.; Rana, H.; Zamboni, R.; Kajzar, F.; Szep, A.A. (Eds.) Chemical Sensing with Solid State Devices; Academic Press: Boston, MA, USA, 2014; p. 925311.

    6. Wan, H.; Ha, D.; Zhang, W.; Zhao, H.; Wang, X.; Sun, Q.; Wang, P. Design of a novel hybrid sensor with microelectrode array and LAPS for heavy metal determination using multivariate nonlinear calibration. Sens. Actuators B Chem. 2014, 192, 755-761. [CrossRef]

    7. Bakker, E.; Bühlmann, P.; Pretsch, E. Polymer membrane ion-selective electrodes-What are the limits? Electroanalysis 1999, 11, 915-933. [CrossRef]

    8. Shioya, T.; Nishizawa, S.; Teramae, N. Anion recognition at the liquid-liquid interface. Sulfate transfer across the 1,2-dichloroethane-water interface facilitated by hydrogen-bonding ionophores. J. Am. Chem. Soc. 1998, 120, 11534-11535. [CrossRef]

    9. Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083-3132. [CrossRef] [PubMed]

    10. Koryta, J. Theory and applications of ion-selective electrodes. Anal. Chim. Acta 1972, 61, 329-411. [CrossRef]

  • Metrics
    No metrics available
Share - Bookmark