Large and small Density Approximations to the thermodynamic Bethe Ansatz

Article, Preprint English OPEN
Fring, A. ; Korff, C. (2000)
  • Publisher: Elsevier
  • Related identifiers: doi: 10.1016/S0550-3213(00)00250-9
  • Subject: Condensed Matter | QC | High Energy Physics - Theory
    arxiv: High Energy Physics::Theory | Nonlinear Sciences::Exactly Solvable and Integrable Systems

We provide analytical solutions to the thermodynamic Bethe ansatz equations in the large and small density approximations. We extend results previously obtained for leading order behaviour of the scaling function of affine Toda field theories related to simply laced Lie algebras to the non-simply laced case. The comparison with semi-classical methods shows perfect agreement for the simply laced case. We derive the Y-systems for affine Toda field theories with real coupling constant and employ them to improve the large density approximations. We test the quality of our analysis explicitly for the Sinh-Gordon model and the $(G_2^{(1)},D_4^{(3)})$-affine Toda field theory.
  • References (20)
    20 references, page 1 of 2

    [1] P. Weisz, Phys. Lett. B67 (1977) 179; M. Karowski and P. Weisz, Nucl. Phys. B139 (1978) 445.

    [2] Al.B. Zamolodchikov, Nucl. Phys. B342 (1990) 695; T.R. Klassen and E. Melzer, Nucl. Phys. B338 (1990) 485; B350 (1991) 635.

    [3] Al.B. Zamolodchikov, Nucl. Phys. B348 (1991) 619.

    [4] V.A. Fateev, Phys. Lett. B324 (1994) 45; Al.B. Zamolodchikov, Int. J. Mod. Phys. A10 (1995) 1125.

    [5] A.B. Zamolodchikov and Al.B. Zamolodchikov, Nucl. Phys. B477 (1996) 577.

    [6] C. Ahn, C. Kim and C. Rim, Nucl. Phys. B556 (1999) 505.

    [7] C. Ahn, V.A. Fateev, C. Kim, C. Rim and B. Yang, Reflection Amplitudes of ADE Toda Theories and Thermodynamic Bethe Ansatz, hep-th/9907072.

    [8] Al.B. Zamolodchikov, 4-th Bologna Workshop on CFT and Integrable Models, (Bologna, 1999).

    [9] A.V. Mikhailov, M.A. Olshanetsky and A.M. Perelomov, Commun. Math. Phys. 79 (1981) 473; G. Wilson, Ergod. Th. Dyn. Syst. 1 (1981) 361; D.I. Olive and N. Turok, Nucl. Phys. B257 [FS14] (1985) 277.

    [10] Al.B. Zamolodchikov, “Resonance Factorized Scattering and Roaming Trajectories”, Preprint ENS-LPS-335 (1991).

  • Metrics
    No metrics available
Share - Bookmark