Share  Bookmark

 Download from




 Funded by

[1] R. Adams, Sobolev spaces, Pure and Applied Mathematics, Academic Press, 1975.
[2] J. Avery, Hyperspherical Harmonics: applications in quantum theory, Reidel texts in the mathematical sciences, Kluwer Academic Publishers, 1989.
[3] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, Graduate Texts in Mathematics, SpringerVerlag, New York, 2001.
[4] I. Babuˇska and J. Melenk, The partition of unity method, Int. J. Numer. Methods Eng., 40 (1997), pp. 727758.
[5] A. H. Barnett and T. Betcke, Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains, J. Comput. Phys., 227 (2008), pp. 70037026.
[6] , An exponentially convergent nonpolynomial finite element method for timeharmonic scattering from polygons, SIAM J. Sci. Comput., 32 (2010), pp. 14171441.
[7] T. Betcke, Numerical computation of eigenfunctions of planar regions, PhD thesis, University of Oxford, 2005.
[8] O. Cessenat and B. Despr´es, Application of an ultra weak variational formulation of elliptic PDEs to the twodimensional Helmholtz equation, SIAM J. Numer. Anal., 35 (1998), pp. 255299.
[9] A. Charalambopoulos and G. Dassios, On the Vekua pair in spheroidal geometry and its role in solving boundary value problems, Appl. Anal., 81 (2002), pp. 85113.
[10] D. Colton, Bergman operators for elliptic equations in three independent variables, Bull. Amer. Math. Soc., 77 (1971), pp. 752756.