On diffraction within a dielectric medium as an example of the Minkowski formulation of optical momentum

Article English OPEN
Padgett, M.J. (2008)
  • Publisher: Optical Society of America
  • Related identifiers: doi: 10.1364/OE.16.020864
  • Subject:
    arxiv: Physics::Optics | Physics::Classical Physics

The Abraham-Minkowski dilemma relates to the disputed value of the optical momentum within a dielectric medium and whether the free-space value should be divided (Abraham) or multiplied (Minkowski) by the refractive index. Although undoubtedly simplistic, these two approaches provide intuitive insight to many subtle problems in optical physics. This paper reviews a modified version of the Einstein box argument that supports an Abraham formulation, then considers diffraction within a dielectric medium and shows it supports a simple Minkowski formulation, i.e. that the optical momentum should be multiplied by the refractive index.
  • References (24)
    24 references, page 1 of 3

    1. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133-201 (1979).

    2. D. Nelson, “Momentum, pseudomomentum, and wave momentum - toward resolving the Minkowski-Abraham controversy,” Phys. Rev. A 44, 3985-3996 (1991).

    3. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375-5401 (2004).

    4. U. Leonhardt, “Optics: Momentum in an uncertain light,” Nature 444, 823-824 (2006).

    5. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197-1216 (2007).

    6. M. Abraham, Rend. Circ. Matem. Palermo 28, 1 (1909).

    7. A. Einstein, “The principle of conservation of the centre of gravity movement and the inertia of energy,” Ann. Phys. 20, 627-633 (1906).

    8. S. Weinberg, “Gravitation and Cosmology: Principles and Applications of the General Theory ” p. 46 (1972).

    9. H. Minkowski, Nachr. Ges. Wiss. Go¨ttn Math.-Phys. Kl. 53, 472-525 (1908).

    10. I. Brevik, “Phenomenological photons and the uncertainty principle,” Eur. J. Phys. 2, 37-43 (1981).

  • Metrics
    No metrics available
Share - Bookmark