Loop-mediated Isothermal Amplification (LAMP) Assays for the Species-specific Detection of Eimeria that Infect Chickens

Article English OPEN
Barkway, Christopher P. ; Pocock, Rebecca L. ; Vrba, Vladimir ; Blake, Damer P. (2015)
  • Publisher: MyJove Corporation
  • Journal: Journal of Visualized Experiments : JoVE, volume 7, issue 96, pages 67-67 (eissn: 1940-087X)
  • Related identifiers: doi: 10.1186/1746-6148-7-67, doi: 10.3791/52552, pmc: PMC4354661, pmc: PMC3217895
  • Subject: Issue 96 | Chickens | Infection | Diagnostics | Research Article | Coccidiosis | veterinary(all) | LAMP | Field tools | Loop-mediated isothermal amplification | Eimeria

Background Eimeria parasites can cause the disease coccidiosis in poultry and even subclinical infection can incur economic loss. Diagnosis of infection predominantly relies on traditional techniques including lesion scoring and faecal microscopy despite the availability of sensitive molecular assays, largely due to cost and the requirement for specialist equipment. Despite longstanding proven efficacy these traditional techniques demand time and expertise, can be highly subjective and may under-diagnose subclinical disease. Recognition of the tight economic margins prevailing in modern poultry production and the impact of avian coccidiosis on poverty in many parts of the world has highlighted a requirement for a panel of straightforward and sensitive, but cost-effective, Eimeria species-specific diagnostic assays. Results Loop-mediated isothermal amplification (LAMP) is an uncomplicated, quick and relatively inexpensive diagnostic tool. In this study we have developed a panel of species-specific LAMP assays targeting the seven Eimeria species that infect the chicken. Each assay has been shown to be genuinely species-specific with the capacity to detect between one and ten eimerian genomes, equivalent to less than a single mature schizont. Development of a simple protocol for template DNA preparation from tissue collected post mortem with no requirement for specialist laboratory equipment supports the use of these assays in routine diagnosis of eimerian infection. Preliminary field testing supports this hypothesis. Conclusions Development of a panel of sensitive species-specific LAMP assays introduces a valuable new cost-effective tool for use in poultry husbandry.
  • References (26)
    26 references, page 1 of 3

    1. Chapman, H. D., et al. A selective review of advances in coccidiosis research. Adv Parasitol. 83, 93-171 (2013).

    2. Shirley, M. W., Smith, A. L., Tomley, F. M. The biology of avian Eimeria with an emphasis on their control by vaccination. Adv Parasitol. 60, 285-330 (2005).

    3. Fornace, K. M., et al. Occurrence of Eimeria species parasites on small-scale commercial chicken farms in Africa and indication of economic profitability. PLoS ONE. 8, (12), e84254 (2013).

    4. Schwarz, R. S., Jenkins, M. C., Klopp, S., Miska, K. B. Genomic analysis of Eimeria spp. populations in relation to performance levels of broiler chicken farms in Arkansas and North Carolina. J Parasitol. 95, (4), 871-880 (2009).

    5. Peek, H. W., Landman, W. J. Coccidiosis in poultry: anticoccidial products, vaccines and other prevention strategies. Vet Q. 31, (3), 143-161 (2011).

    6. Johnson, J., Reid, W. M. Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens. Exp Parasitol. 28, (1), 30-36 (1970).

    7. Haug, A., Gjevre, A. G., Skjerve, E., Kaldhusdal, M. A survey of the economic impact of subclinical Eimeria infections in broiler chickens in Norway. Avian Pathol. 37, (3), 333-341 (2008).

    8. Procunier, J., Fernando, M., Barta, J. Species and strain differentiation of Eimeria spp. of the domestic fowl using DNA polymorphisms amplified by arbitrary primers. Parasitology Research. 79, (2), 98-102 (1993).

    9. Schnitzler, B. E., Thebo, P. L., Mattsson, J. G., Tomley, F. M., Shirley, M. W. Development of a diagnostic PCR assay for the detection and discrimination of four pathogenic Eimeria species of the chicken. Avian Pathol. 27, (5), 490-497 (1998).

    10. Vrba, V., Blake, D. P., Poplstein, M. Quantitative real-time PCR assays for detection and quantification of all seven Eimeria species that infect the chicken. Vet Parasitol. 174, (3-4), 183-190 (2010).

  • Related Research Results (1)
    Inferred
    Quantitative real-time PCR (2011)
    40%
  • Metrics
    No metrics available
Share - Bookmark