Share  Bookmark

 Download from


Antonowicz M and Fordy A P, Coupled KdV equations with multiHamiltonian structures, Phys. D 28 (1987), 345357.
Benny D J, Some properties of long nonlinear waves, Stud. Appl. Math. 52 (1973), 4550.
Bilge A H, On the equivalence of linearization and formal symmetries as integrability tests for evolution equations, J. Phys. A 26, No. 24 (1993), 75117519.
Boiti M, Pempinelli F, and Tu G Z, The nonlinear evolution equations related to the WadatiKonnoIchikawa spectral problem, Progr. Theoret. Phys. 69, No. 1 (1983), 4864.
Calogero F, The evolution partial differential equation ut = uxxx + 3(uxxu2 + 3u2xu) + 3uxu4, J. Math. Phys. 28, No. 3 (1987), 538555.
Calogero F and Degasperis A, Reduction technique for matrix nonlinear evolution equations solvable by the spectral transform, J. Math. Phys. 22 (1981), 2331.
[CDG76] Caudrey P J, Dodd R K and Gibbon J D, A new hierarchy of Kortewegde Vries equation, Proc. Roy. Soc. London Ser. A 351 (1976), 407422.
[Cho87a] Chou T, Symmetries and a hierarchy of the general KdV equation, J. Phys. A 20 (1987), 359366.
[Cho87b] Chou T, Symmetries and a hierarchy of the general modified KdV equation, J. Phys. A 20 (1987), 367374.
Chen H H, Lee Y C and Lin J E, On the direct construction of the inverse scattering operators of integrable nonlinear Hamiltonian systems, Phys. D 26 (1987), 165170.
The information is available from the following content providers:
From  Number Of Views  Number Of Downloads 

Kent Academic Repository  IRUSUK  0  105 