On spherical averages of radial basis functions
 Publisher: Springer

Related identifiers: doi: 10.1007/s102080079021x 
Subject: ems

References
(21)
[1] B. J. C. Baxter (1994), \Norm estimates for inverses of Toeplitz distance matrices", J. Approx. Theory 79:222{242.
[2] B. J. C. Baxter and A. Iserles (2003), \On the foundations of computational mathematics", in Handbook of Numerical Analysis XI (P.G. Ciarlet and F. Cucker, eds), NorthHolland, Amsterdam, 3{34.
[3] M. D. Buhmann (2003), Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press.
[4] W. F. Donoghue, Jr., Distributions and Fourier Transforms, Academic Press, New York.
[5] A. Edelman and N. Raj Rao (2005), \Random matrix theory", Acta Numerica: 14: 233{297.
[6] G. Fasshauer (2007), Meshfree Approximation Methods with Matlab, World Scienti c Publishing.
[7] F. G. Friedlander and M. Joshi (1999), Introduction to the Theory of Distributions, Cambridge University Press.
[8] I. R. H. Jackson (1988), \Convergence Properties of Radial Basis Functions", Constr. Approx. 4: 243{264.
[9] F. John (1955), Plane waves and spherical means applied to partial di erential equations, Interscience, New York.
[10] D. S. Jones (1982), The Theory of Generalised Functions, Cambridge University Press.

Metrics
0views in OpenAIRE0views in local repository57downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Birkbeck Institutional Research Online  IRUSUK 0 57

 Download from


Cite this publication