Share  Bookmark

 Download from



[1] M. Abtahi and T. G. Honary, On the maximal ideal space of DalesDavie algebras of in nitely di erentiable functions, Bull. Lond. Math. Soc. 39 (2007), no. 6, 940{948.
[2] Tom M. Apostol, Mathematical analysis, second ed., AddisonWesley Publishing Co., Reading, Mass.LondonDon Mills, Ont., 1974.
[3] William J. Bland and Joel F. Feinstein, Completions of normed algebras of di erentiable functions, Studia Math. 170 (2005), no. 1, 89{111.
[4] Tanadon Chaobankoh, Endomorphisms of banach function algebras, Ph.D. thesis, University of Nottingham, 2012.
[5] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press Oxford University Press, New York, 2000.
[6] H. G. Dales and A. M. Davie, Quasianalytic Banach function algebras, J. Functional Analysis 13 (1973), 28{50.
[7] H. G. Dales and J. F. Feinstein, Normed algebras of di erentiable functions on compact plane sets, Indian J. Pure Appl. Math. 41 (2010), no. 1, 153{187.
[8] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, SpringerVerlag New York Inc., New York, 1969.
[9] Joel F. Feinstein and Herbert Kamowitz, Endomorphisms of Banach algebras of in nitely di erentiable functions on compact plane sets, J. Funct. Anal. 173 (2000), no. 1, 61{73.
[10] , Compact endomorphisms of Banach algebras of in nitely di erentiable functions, J. London Math. Soc. (2) 69 (2004), no. 2, 489{502.