Half-turns and line symmetric motions

Article English OPEN
Selig, JM ; Husty, M (2011)

A line symmetric motion is the motion obtained by reflecting a rigid body in the successive generator lines of a ruled surface. In this work we review the dual quaternion approach to rigid body displacements, in particular the representation of the group SE(3) by the Study quadric. Then some classical work on reflections in lines or half-turns is reviewed. Next two new characterisations of line symmetric motions are presented. These are used to study a number of examples one of which is a novel line symmetric motion given by a rational degree five curve in the Study quadric. The rest of the paper investigates the connection between sets of half-turns and linear subspaces of the Study quadric. Line symmetric motions produced by some degenerate ruled surfaces are shown to be restricted to certain 2-planes in the Study quadric. Reflections in the lines of a linear line complex lie in the intersection of the Study quadric with a 4-plane. © 2010 Elsevier Ltd. All rights reserved.
  • References (26)
    26 references, page 1 of 3

    [1] W. Blaschke, Kinematik und Quaternionen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960.

    [2] Borel E., “M´emoire sur les d´eplacements `a trajectoires sph´erique”, M´em. pr´esent´es par divers savants, Paris (2), 33, pp. 1-128, 1908.

    [3] O. Bottema and B. Roth. Theoretical Kinematics. Dover Publications, New York, 1990.

    [4] Bricard R., “M´emoire sur les d´eplacements `a trajectoires sph´erique”, Journ. E´ cole Polyt.(2), 11,pp. 1-96, 1906.

    [5] W. K. Clifford. “Preliminary sketch of biquaternions”, in Proc. London Math. Soc., 1871 s1-4(1):381-395; doi:10.1112/plms/s1-4.1.381

    [6] F.M. Dimentberg. “The screw calculus and its applications in mechanics”, Published by Wright-Patterson Air Force Base (Ohio). Foreign Technology Division. Translation Division, 1968. Translation of: Vintovoye ischisleniye i yego prilozheniya v mekhanike. Izdatel'stvo ”Nauka”, Glavnaya Redaktsiya, Fiziko-Matematicheskoy Literatury. Moskva, 1965.

    [7] M. Husty. “E. Borel's and R. Bricard's Papers on Displacements with Spherical Paths and their Relevance to Self-motions of Parallel Manipulators”, in: International Symposium on History of Machines and MechanismsProceedings HMM 2000, Ed. M. Ceccarelli, Kluwer Acad. Pub., 163 - 172, ISBN 0-7923-6372-8, 2000.

    [8] M. Husty. “Symmetrische Schrotungen im einfach isotropen Rau”, Sitzungberichte d. ¨osterr. Akad. d. Wiss., math.-nw. Kl., 195: 291-306, 1986.

    [9] M. Husty. “ U¨ber eine symmetrische Schrotung mit einer Cayley-Fl¨ache als Grundfl¨ache”, Stud. Sci. Math. Hungarica, 22:463-469, 1987.

    [10] M. Husty, A. Karger, H. Sachs, W. Steinhilper,: Kinematik und Robotik, Springer Verlag, Berlin - Heidelberg - New York, ISBN 3-540-63181-X, 633 S, 1997.

  • Similar Research Results (3)
  • Metrics
    No metrics available
Share - Bookmark