Gradient integrability and rigidity results for twophase conductivities in two dimensions
Article
English
OPEN
Nesi, Vincenzo
;
Palombaro, Mariapia
;
Ponsiglione, Marcello
(2014)
This paper deals with higher gradient integrability for σharmonic functions u with discontinuous coefficients σ, i.e. weak solutions of div(σ∇u)=0 in dimension two. When σ is assumed to be symmetric, then the optimal integrability exponent of the gradient field is known thanks to the work of Astala and Leonetti and Nesi. When only the ellipticity is fixed and σ is otherwise unconstrained, the optimal exponent is established, in the strongest possible way of the existence of socalled exact solutions, via the exhibition of optimal microgeometries.\ud \ud We focus also on twophase conductivities, i.e., conductivities assuming only two matrix values, σ1 and σ2, and study the higher integrability of the corresponding gradient field ∇u for this special but very significant class. The gradient field and its integrability clearly depend on the geometry, i.e., on the phases arrangement described by the sets Ei=σ−1(σi). We find the optimal integrability exponent of the gradient field corresponding to any pair {σ1,σ2} of elliptic matrices, i.e., the worst among all possible microgeometries.\ud \ud We also treat the unconstrained case when an arbitrary but finite number of phases are present.

Metrics
0
views in local repository
19
downloads in local repository
The information is available from the following content providers: