Kinetic modeling of Nernst effect in magnetized hohlraums

Article, Unknown OPEN
Joglekar, A. S. ; Ridgers, C. P. ; Kingham, R. J. ; Thomas, A. G. R. (2016)
  • Publisher: American Physical Society
  • Related identifiers: doi: 10.1103/PhysRevE.93.043206
  • Subject: 01 Mathematical Sciences | TRANSPORT | DISTRIBUTIONS | Physical Sciences | 09 Engineering | Science & Technology | Physics, Mathematical | Physics, Fluids & Plasmas | Physics | INVERSE BREMSSTRAHLUNG | Fluids & Plasmas | PLASMA | FIELDS | 02 Physical Sciences

We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.
  • References (28)
    28 references, page 1 of 3

    [1] P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Se´guin, and R. D. Petrasso, Phys. Rev. Lett. 107, 035006 (2011).

    [2] M. Hohenberger, P. Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Se´guin, and R. D. Petrasso, Phys. Plasmas 19, 056306 (2012).

    [3] G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P. Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, Phys. Rev. Lett. 113, 105003 (2014).

    [4] J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004).

    [5] D. S. Montgomery, B. J. Albright, D. H. Barnak, P. Y. Chang, J. R. Davies, G. Fiksel, D. H. Froula, J. L. Kline, M. J. Macdonald, A. B. Sefkow, L. Yin, and R. Betti, Phys. Plasmas 22, 010703 (2015).

    [6] S. P. Regan, N. B. Meezan, L. J. Suter, D. J. Strozzi, W. L. Kruer, D. Meeker, S. H. Glenzer, W. Seka, C. Stoeckl, V. Y. Glebov, T. C. Sangster, D. D. Meyerhofer, R. L. McCrory, E. A. Williams, O. S. Jones, D. A. Callahan, M. D. Rosen, O. L. Landen, C. Sorce, and B. J. MacGowan, Phys. Plasmas 17, 020703 (2010).

    [7] D. J. Strozzi, L. J. Perkins, M. M. Marinak, D. J. Larson, J. M. Koning, and B. G. Logan, J. Plasma Phys. 81, 475810603 (2015).

    [8] A. Nishiguchi, T. Yabe, M. G. Haines, M. Psimopoulos, and H. Takewaki, Phys. Rev. Lett. 53, 262 (1984).

    [9] M. G. Haines, Plasma Phys. Controlled Fusion 28, 1705 (2000).

    [10] C. P. Ridgers, R. J. Kingham, and A. G. R. Thomas, Phys. Rev. Lett. 100, 075003 (2008).

  • Metrics
    No metrics available
Share - Bookmark