Moduli Spaces of Topological Solitons

Subject: QA  QC20

References
(13)
13 references, page 1 of 2
 1
 2
133 4πr3β2r−2 (1 − β2r)2 1 d (β¯b1) dβdβ¯ β dβ 1 + [9] HY Chen and NS Manton. The kähler potential of abelian higgs vortices. Journal of Mathematical Physics, Vol. 46, Issue 5, p.052305, 2005.
[10] RJ Cova and WJ Zakrzewski. Scattering of periodic solitons. Revista Mexicana De Fisica, vol. 50, no. 5, p. 527535, 2004.
[11] GH Derrick. Comments on nonlinear wave equations as models for elementary particles. Journal of Mathematical Physics, 5(9):12521254, 1964.
[12] PAM Dirac. The theory of magnetic poles. Physical Review, 74(7):817, 1948.
[13] MP Do Carmo. Differential forms and applications, volume 297. Springer, 1994.
[14] AL Edmonds. Deformation of maps to branched coverings in dimension two. Annals of Mathematics, pages 113125, 1979.
[16] W Fulton. Algebraic topology: a first course, volume 153. Springer, 1995.
[41] M Nakahara. Geometry, topology and physics. CRC Press, 2003.
[44] AM. Polyakov. Quantum Geometry of Bosonic Strings. Phys.Lett., B103:207210, 1981.
[55] EH Spanier. Algebraic topology, volume 55. Springer, 1994.

Metrics
0views in OpenAIRE0views in local repository38downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Kent Academic Repository  IRUSUK 0 38

 Download from


Cite this publication