Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase

Article English OPEN
Usha, Veeraraghavan ; Lloyd, Adrian J. ; Roper, David I. ; Dowson, Christopher G. ; Kozlov, Guennadi ; Gehring, Kalle ; Chauhan, Smita ; Imam, Hasan T. ; Blindauer, Claudia A. ; Besra, Gurdyal S. (2016)
  • Publisher: Nature Publishing Group
  • Journal: Scientific Reports (issn: 2045-2322, vol: 6)
  • Related identifiers: doi: 10.1038/srep23191, pmc: PMC4791643
  • Subject: QR | RC | RM | Article | RA

With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug.
  • References (34)
    34 references, page 1 of 4

    1. Dye, C. et al. WHO and the future of disease control programmes. Lancet. 381, 413-418 (2013).

    2. Kapur, A. & Harries, A. D. The double burden of diabetes and tuberculosis - Public health implications. Diabetes Res. Clin. Pract. 101, 10-19 (2013).

    3. Cox, R. J. eTh DAP pathway to lysine as a target for antimicrobial agents. Nat. Prod. Rep. 13, 29-43 (1996).

    4. Cox, R. J., Sutherland, A. & Vederas, J. C. Bacterial diaminopimelate metabolism as a target for antibiotic design. Bioorganic Med. Chem. 8, 843-871 (2000).

    5. Schleifer, K. H. & Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407-477 (1972).

    6. Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS. Microbiol. Rev. 32, 149-167 (2008).

    7. Scapin, G. & Blanchard, J. S. Enzymology of bacterial lysine biosynthesis. Adv. Enzymol. Rel. Areas Mol. Biol. 72, 279-324 (1998).

    8. Schrumpf, B. et al. A functionally split pathway for lysine synthesis in Corynebacterium glutamicum. J. Bacteriol 173, 4510-4516 (1991).

    9. Nocek, B. P., Gillner, D. M., Fan, Y., Holz, R. C. & Joachimiak, A. Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase. J. Mol. Biol. 397, 617-626 (2010).

    10. Starus, A. et al. Inhibition of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Neisseria meningitidis by L-captopril. Biochemistry 54, 4834-4844 (2015).

  • Metrics
    No metrics available
Share - Bookmark