The HPS electromagnetic calorimeter

Article, Preprint English OPEN
Balossino, Ilaria ; Baltzell, Nathan ; Battaglieri, Marco ; Bondi, Mariangela ; Buchanan, Emma ; Calvo, Daniela ; Celentano, Andrea ; Charles, Gabriel ; Colaneri, Luca ; D'Angelo, Annalisa ; De Napoli, Marzio ; De Vita, Raffaella ; Dupre, Raphael ; Egiyan, Hovanes ; Ehrhart, Mathieu ; Filippi, Alessandra ; Garcon, Michel ; Gevorgyan, Nerses ; Girod, Francois-Xavier ; Guidal, Michel ; Holtrop, Maurik ; Iurasov, Volodymyr ; Kubarovsky, Valery ; Livingston, Kenneth ; McCarty, Kyle ; McCormick, Jeremy ; McKinnon, Bryan ; Osipenko, Mikhail ; Paremuzyan, Rafayel ; Randazzo, Nunzio ... view all 39 authors (2016)
  • Publisher: Elsevier
  • Related identifiers: doi: 10.1016/j.nima.2017.02.065
  • Subject: Physics - Instrumentation and Detectors | High Energy Physics - Experiment | Nuclear Experiment
    arxiv: Physics::Instrumentation and Detectors | High Energy Physics::Experiment

The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called “heavy photon.” Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015–2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.
  • References (9)

    [1] R. Essig, J. A. Jaros, W. Wester et al., Planning the future of U.S. Particle Physics, The Intensity Frontier, Dark Sectors and New, Light, Weakly Coupled Particles, arXiv:1311.0029; J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, arXiv:1608.08632; and references therein.

    [2] M. Battaglieri et al., The Heavy Photon Search Test Detector, Nucl. Instrum. Meth. A 777 (2014) 91-101.

    [11] V.A. Batarin et al., Correlation of beam electron and LED signal losses under irradiation and long-term recovery of lead tungstate crystals, Nucl. Instrum. Meth. A 550 (2005) 543-550.

    [12] S. Agostinelli et al., Geant4a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250-303.

    [13] T. C. Awes et al., A Simple Method of Shower Localization and Identi - cation in Laterally Segmented Calorimeters, Nucl. Instrum. Meth. A 311 (1992) 130.

    [14] H. Szumila-Vance and M. Garcon , HPS/ECal simulations: energy and position reconstruction for electrons, positrons and photons, HPS-Note 2014- 001.

    [15] H. Szumila-Vance, HPS Ecal Energy Calibration for the Spring 2015 Engineering Run, HPS-Note 2016-002.

    [16] N. Baltzell, ECal pulse tting, HPS-Note 2015-010.

    [17] H. Szumila-Vance, ECal Timing Calibration for the Spring 2015 Engineering Run, HPS-Note 2015-011

  • Metrics
    No metrics available
Share - Bookmark