From symmetry breaking to Poisson Point Process in 2D Voronoi Tessellations: the generic nature of hexagons
 Publisher: Springer

Subject:arxiv: Computer Science::Computational Geometry

References
(33)
Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Saunders, 1976.
Aurenhammer F. (1991). Voronoi Diagrams  A Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys, 23, 345405.
Barber C. B., Dobkin D. P., and Huhdanpaa H.T. (1996). The Quickhull Algorithm for Convex Hulls, ACM Transactions on Mathematical Software 22, 469483 Barrett T. M. (1997). Voronoi tessellation methods to delineate harvest units for spatial forest planning, Can. J. For.
Res. 27(6): 903910.
Bennett, L. H., Kuriyama, M., Long, G. G., Melamud, M., Watson, R. E., and Weinert, M. (1986). Local atomic environments in periodic and aperiodic AlMn alloys, Phys. Rev. B 34, 82708272.
Bowyer A. (1981). Computing Dirichlet tessellations, The Computer Journal 1981 24:162166.
Calka P. (2003). Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a twodimensional Poisson Voronoi tessellation and a Poisson line process, Advances in Applied Probability 35, 551562.
Christ, N. H., Friedberg, R., and Lee, T. D. (1982). Random lattice field theory: General formulation. Nuclear Physics B 202, 89  125.
Delaunay B. (1934). Sur la sphère vide, Otdelenie Matematicheskikh i Estestvennykh Nauk 7: 793800.
Desch C. H. (1919). The solidification of metals from the liquid state, J. Inst. Metals, 22, 241.

Metrics
0views in OpenAIRE0views in local repository17downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Central Archive at the University of Reading  IRUSUK 0 17

 Download from


Cite this publication