Developing accurate models of the human airways

Article English OPEN
Marshall, Lindsay J. ; Oguejiofor, Wilson ; Willetts, Rachel S. ; Griffiths, Helen R. ; Devitt, Andrew (2015)

Objectives Particle delivery to the airways is an attractive prospect for many potential therapeutics, including vaccines. Developing strategies for inhalation of particles provides a targeted, controlled and non-invasive delivery route but, as with all novel therapeutics, in vitro and in vivo testing are needed prior to clinical use. Whilst advanced vaccine testing demands the use of animal models to address safety issues, the production of robust in vitro cellular models would take account of the ethical framework known as the 3Rs (Replacement, Reduction and Refinement of animal use), by permitting initial screening of potential candidates prior to animal use. There is thus a need for relevant, realistic in vitro models of the human airways. Key findings Our laboratory has designed and characterised a multi-cellular model of human airways that takes account of the conditions in the airways and recapitulates many salient features, including the epithelial barrier and mucus secretion. Summary Our human pulmonary models recreate many of the obstacles to successful pulmonary delivery of particles and therefore represent a valid test platform for screening compounds and delivery systems.
  • References (39)
    39 references, page 1 of 4

    2. Forbes B. & Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications. Eur  J Pharm Biopharm. 2005; 60: 193‐205. 

    5.  Pack  RJ,  Al‐Ugaily  LH,  &  Morris  G.  The  cells  of  the  tracheobronchial  epithelium  of  the  mouse:  a  quantitative light and electron microscope study. J Anat. 1981;132(Pt 1):71‐84. 

    6.  Rogers,  A.  V.,  et  al.  Identification  of  serous‐like  cells  in  the  surface  epithelium  of  human  bronchioles. Eur Resp J, 1993;6, 498‐504. 

    7. Knight, D. A. & Holgate, S. T. The airway epithelium: structural and functional properties in health  and disease. Respirology, 2003;8, 432‐46. 

    11.  Bienkowski,  R.  S.  &  Gotkin,  M.  G.  Year.  Control  of  collagen  deposition  in  mammalian  lung.  In:   Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology  and Medicine (New York, NY), 1995. Royal Society of Medicine, 118‐140. 

    12. Brewster, C. E. et al. Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Resp Cell  Mol Biol, 1990;3, 507‐11. 

    13. Mutsaers, S. E. et al. Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem  Cell Biol, 1997;29, 5‐17. 

    14. McAnulty, R. J., Chambers, R. C. & Laurent, G. J. Regulation of fibroblast procollagen production.  Transforming  growth  factor‐beta  1  induces  prostaglandin  E2  but  not  procollagen  synthesis  via  a  pertussis toxin‐sensitive G‐protein. Biochem J, 1995; 307 (Pt 1), 63‐8. 

    6. Evans, M. J. et al. The attenuated fibroblast sheath of the respiratory tract epithelial‐mesenchymal  trophic unit. Am J Resp Cell Mol Biol, 1999;. 21, 655‐7.  19. Ong HX, Traini D, & Young PM. Pharmaceutical applications of the Calu‐3 lung epithelia cell line.  Expert Opin Drug Deliv. 2013;10(9):1287‐302. 

    21. Grainger CI et al. Culture of Calu‐3 at the air‐liquid interface provides a representative model of  the airway epithelial barrier. Pharmaceutical Research. 2006; 23(7): 1482‐1490. 

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Aston Publications Explorer - IRUS-UK 0 4
Share - Bookmark