First determination of the CP content of D→π+π−π+π− and updated determination of the CP contents of D→π+π−π0 and D→K+K−π0

Unknown, Article, Preprint English OPEN
Malde, Sneha ; Thomas, C. (Christopher) ; Wilkinson, G. (Guy) ; Naik, P. (Paras) ; Prouve, Claire ; Rademacker, Jonas ; Libby, J. (James) ; Nayak, M. ; Gershon, T. J. ; Briere, R. A. (Roy A.) (2015)
  • Publisher: Elsevier Science BV
  • Journal: Physics Letters B, volume 747, pages 9-17 (issn: 0370-2693)
  • Related identifiers: doi: 10.1016/j.physletb.2015.05.043, doi: 10.1016/j.physletb.2015.05.043
  • Subject: CP violation | QC | Particle Physics - Experiment | High Energy Physics - Experiment | Quantum correlations | Charm decay | Nuclear and High Energy Physics

Quantum-correlated $\psi(3770) \to D\bar{D}$ decays collected by the CLEO-c experiment are used to perform a first measurement of $F_+^{4\pi}$, the fractional $CP$-even content of the self-conjugate decay $D \to \pi^+\pi^-\pi^+\pi^-$, obtaining a value of $0.737 \pm 0.028$. An important input to the measurement comes from the use of $D \to K^0_{\rm S}\pi^+\pi^-$ and $D \to K^0_{\rm L}\pi^+\pi^-$ decays to tag the signal mode. This same technique is applied to the channels $D \to\pi^+\pi^-\pi^0$ and $D \to K^+K^-\pi^0$, yielding $F_+^{\pi\pi\pi^0} = 1.014 \pm 0.045 \pm 0.022$ and $F_+^{KK\pi^0} = 0.734 \pm 0.106 \pm 0.054$, where the first uncertainty is statistical and the second systematic. These measurements are consistent with those of an earlier analysis, based on $CP$-eigenstate tags, and can be combined to give values of $F_+^{\pi\pi\pi^0} = 0.973 \pm 0.017$ and $F_+^{KK\pi^0} = 0.732 \pm 0.055$. The results will enable the three modes to be included in a model-independent manner in measurements of the unitarity triangle angle $\gamma$ using $B^\mp \to DK^\mp$ decays, and in time-dependent studies of $CP$ violation and mixing in the $D\bar{D}$ system.
  • References (26)
    26 references, page 1 of 3

    [1] M. Nayak, et al., First determination of the CP content of D → π +π −π 0 and D → K + K −π 0, Phys. Lett. B 740 (2015) 1, arXiv:1410.3964 [hep-ex].

    [2] K.A. Olive, et al., Particle Data Group, Review of particle physics, Chin. Phys. C 38 (2014) 090001.

    [3] R. Aaij, et al., LHCb Collaboration, Search for CP violation in D0 → π +π −π 0 decays with the energy test, Phys. Lett. B 740 (2015) 158, arXiv:1410.4170 [hep-ex].

    [4] R. Aaij, et al., LHCb Collaboration, Model-independent search for CP violation in D0 → K − K +π −π + and D0 → π −π +π −π + decays, Phys. Lett. B 726 (2013) 623, arXiv:1308.3189 [hep-ex].

    [5] S. Malde, C. Thomas, G. Wilkinson, Measuring CP violation and mixing in charm with inclusive self-conjugate multibody decay modes, arXiv:1502.04560 [hepph].

    [6] A. Bondar, A. Poluektov, The use of quantum correlated D0 decays for φ3 measurement, Eur. Phys. J. C 55 (2008) 51, arXiv:0801.0840 [hep-ex].

    [7] M. Gronau, D. London, How to determine all the angles of the unitarity triangle from Bd0 → D K S and B0s → Dφ, Phys. Lett. B 253 (1991) 483; M. Gronau, D. Wyler, On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B 265 (1991) 172.

    [8] Y. Kubota, et al., CLEO Collaboration, The CLEO II detector, Nucl. Instrum. Methods A 320 (1992) 66; D. Peterson, et al., The CLEO III drift chamber, Nucl. Instrum. Methods A 478 (2002) 142; M. Artuso, et al., Construction, pattern recognition and performance of the CLEO III LiF-TEA RICH detector, Nucl. Instrum. Methods A 502 (2003) 91; R.A. Briere, et al., CLEO-c/CESR-c Taskforces and CLEO-c Collaboration, CLEO-c and CESR-c: a new frontier of weak and strong interactions, Cornell LEPP Report CLNS Report No. 01/1742, 2001.

    [9] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods A 462 (2001) 152.

    [10] R. Brun, et al., GEANT 3.21, CERN Program Library Long Writeup W5013, unpublished.

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark