Entanglement distribution for a practical quantum-dot-based quantum processor architecture

Article, Preprint English OPEN
Spiller, Timothy P. ; D'Amico, Irene ; Lovett, Brendon W. (2006)
  • Journal: NEW JOURNAL OF PHYSICS (issn: 1367-2630, vol: 9)
  • Related identifiers: doi: 10.1088/1367-2630/9/1/020
  • Subject: 3100
    acm: TheoryofComputation_GENERAL
    arxiv: Quantum Physics

We propose a quantum dot (QD) architecture for enabling universal quantum information processing. Quantum registers, consisting of arrays of vertically stacked self-assembled semiconductor QDs, are connected by chains of in-plane self-assembled dots. We propose an entanglement distributor, a device for producing and distributing maximally entangled qubits on demand, communicated through in-plane dot chains. This enables the transmission of entanglement to spatially separated register stacks, providing a resource for the realization of a sizeable quantum processor built from coupled register stacks of practical size. Our entanglement distributor could be integrated into many of the present proposals for self-assembled QD-based quantum computation (QC). Our device exploits the properties of simple, relatively short, spin-chains and does not require microcavities. Utilizing the properties of self-assembled QDs, after distribution the entanglement can be mapped into relatively long-lived spin qubits and purified, providing a flexible, distributed, off-line resource. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • References (9)

    ∗ Electronic address: tim.spiller@hp.com † Electronic address: ida500@york.ac.uk ‡ Electronic address: brendon.lovett@materials.oxford.ac.uk 1 Petroff P M, et al. 2001 Physics Today 54 issue 5 46 2 Biolatti E, et al. 2000 Phys. Rev. Lett. 85 5647; E. Biolatti, et al.

    2002 Phys. Rev. B 65 075306 3 De Rinaldis S, et al. 2002 Phys. Rev. B 65 081309 4 Nazir A, et al. 2004 Phys. Rev. Lett. 93 150502 5 Nazir A, et al. 2004 Phys. Rev. A 70 052301 6 Feng M, et al. 2003 Phys. Rev. A 67 014306 7 Feng M, et al. 2004 Europhys. Lett. 66 14 8 Pazy E, et al. 2003 Europhys. Lett. 62 175 9 Sherwin M S, et al. 1999 Phys. Rev. A 60 3508 10 D'Amico I 2005 cond-mat/0511470. 11 Moritz A, et al. 1996 Appl. Phys. Lett. 69 212; Su Y K, et al.

    2004 Semicond. Sci. Technol. 19 No 3 389; Edwards P R, et al.

    2004 Appl. Phys. Lett. 85 4281; Gao Q, et al. 2005 Electrochem.

    Solid-State Lett. 8 G57 12 Wang Z M, et al. 2004 Appl. Phys. Lett. 84 1931 13 Kiravittaya S, et al. 2004 Physica E 23 253; Kiravittaya S and

    Schmidt O G 2005 Appl. Phys. Lett. 86 206101; Rastelli A, et al.

    2004 Phys. Rev. Lett 92 166104 14 Knox R S and Van Amerongen H 2002 J. Phys. Chem. B 106 5289 15 Crooker S A, et al. 2002 Phys. Rev. Lett. 89 186802 16 Lovett B W 2006 New J. Phys. 8 69 17 We neglect three further decoherence mechanisms as they act only

    (see18) and nuclear spin interactions (see19). 18 Nazir A, et al. 2005 Phys. Rev. B 71 045334 19 Petta J R et al. 2005 Science 309 2180 20 Bayer M and Forchel A 2002 Phys. Rev. B 65 041308 21 Krummheuer B, et al. 2002 Phys. Rev. B 65 195313 22 Krummheuer B, et al. 2005 Phys. Rev. B 71 235329 23 Vagon A, et al. 2004 Phys. Rev. B 70 201305 24 Borri P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang

    D and Bimberg D 2001 Phys. Rev. Lett. 87 157401 25 Bennett C H, et al. 1996 Phys. Rev. Lett. 76 722 26 Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86, 5188

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark