Share  Bookmark

 Download from




[1] S. Cecotti, C. Vafa: Topologicalantitopological fusion, Nuclear Physics B 367 (1991), p. 359461.
[2] L. David, I. A. B. Strachan: Compatible metrics on a manifold and Nonlocal BiHamiltonian Structures, Internat. Math. Res. Notices, no. 66 (2004), p. 35333557.
[3] L. David, I. A. B. Strachan: Conformal flat pencil of metrics, Frobenius structures and a modified Saito construction, J. Geom. Physics 56 (2006), p. 15611575.
[4] B. Dubrovin: On almost duality for Frobenius manifolds, Geometry, topology and mathematical physics, 75132, Amer. Math. Soc. Transl. Ser. 2, 212.
[5] B. Dubrovin: Flat pencils of metrics and Frobenius manifolds in Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), 4772, World Sci. Publishing, River Edge, NJ, 1998.
[6] C. Hertling: tt∗geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math. 555 (2003), p. 77161.
[7] C. Hertling: Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics, Cambridge University Press 2002.
[8] C. Hertling, Yuri I. Manin: Weak Frobenius Manifolds, Internat. Math. Res. Notices, no. 6 (1999), p. 277286.
[9] J. Lin: Some constraints on Frobenius manifolds with a tt∗structure, arXiv:0904.3219v1.
[10] P. Lorenzoni, M. Pedroni, A. Raimondo: F manifolds and integrable systems of hydrodinamic type, arXiv:0905.4052.v2