On a direct approach to quasideterminant solutions of a noncommutative KP equation

Related identifiers: doi: 10.1088/17518113/41/8/085202, doi: 10.1088/17518113/40/14/007 
Subject: QC  Nonlinear Sciences  Exactly Solvable and Integrable Systemsarxiv: Nonlinear Sciences::Exactly Solvable and Integrable Systems

References
(16)
16 references, page 1 of 2
 1
 2
[3] A. Dimakis and F. Mu¨llerHoissen. With a ColeHopf transformation to solutions of the noncommutative KP hierarchy in terms of Wronski matrices. J. Phys. A, 40(17):F321F329, 2007.
[4] P. Etingof, I. Gelfand, and V. Retakh. Factorization of differential operators, quasideterminants, and nonabelian Toda field equations. Math. Res. Lett., 4(23):413425, 1997.
[5] G. Fal′ki, F. Magri, M. Pedroni, and Kh. P. Subelli. An elementary approach to the polynomial τ functions of the KPhierarchy. Teoret. Mat. Fiz., 122(1):2336, 2000.
[6] I. M. Gelfand and L. A. Dickii. Fractional powers of operators and hamiltonian systems. Funct. Anal. Appl., (10):259273, 1976.
[7] I. M. Gelfand, S. Gelfand, V. S. Retakh, and R. L. Wilson. Quasideterminants. Adv. Math., 193(1):56141, 2005.
[8] I. M. Gelfand and V. S. Retakh. Determinants of matrices over noncommutative rings. Funktsional. Anal. i Prilozhen., 25(2):1325, 96, 1991.
[9] I. M. Gelfand and V. S. Retakh. Quasideterminants. I. Selecta Math. (N.S.), 3(4):517546, 1997.
[10] C. R. Gilson and J. J. C. Nimmo. On a direct approach to quasideterminant solutions of a noncommutative KP equation. J. Phys. A, 40(14):38393850, 2007.
[11] V. M. Goncharenko and A. P. Veselov. Monodromy of the matrix Schr¨odinger equations and Darboux transformations. J. Phys. A, 31(23):53155326, 1998.
[12] B.A. Kupershmidt. KP or mKP noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, volume 78. American Mathematical Society, 2000.

Similar Research Results
(4)

Metrics
No metrics available

 Download from



Cite this publication