Share  Bookmark

 Download from




 Funded by

[1] J. Ambj rn, A. Goerlich, J. Jurkiewicz, and R. Loll. Nonperturbative Quantum Gravity. arXiv:1203.3591, March 2012.
[2] Jan Ambj rn, Berg nnur Durhuus, and Thordur Jonsson. Quantum Geometry. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK, 2005.
[3] Takehiro Azuma, Subrata Bal, Keiichi Nagao, and Jun Nishimura. Nonperturbative studies of fuzzy spheres in a matrix model with the ChernSimons term. JHEP, 05:005, 2004.
[4] John W. Barrett. A Lorentzian version of the noncommutative geometry of the standard model of particle physics. J. Math. Phys., 48:012303, 2007.
[5] John W. Barrett. Matrix geometries and fuzzy spaces as nite spectral triples. J. Math. Phys., 56:082301, 2015.
[6] S. Chadha, G. Mahoux, and M. L. Mehta. A method of integration over matrix variables: II. Journal of Physics A: Mathematical and General, 14(3):579, March 1981.
[7] Ali H. Chamseddine and Alain Connes. The Spectral Action Principle. Communications in Mathematical Physics, 186(3):731{750, July 1997. arXiv: hepth/9606001.
[8] Ali H. Chamseddine and Alain Connes. The Uncanny Precision of the Spectral Action. Communications in Mathematical Physics, 293(3):867{ 897, February 2010. arXiv: 0812.0165.
[9] Giovanni M. Cicuta. Phase transitions and random matrices. In Random matrix models and their applications, volume 40 of Math. Sci. Res. Inst. Publ., pages 95{109. Cambridge Univ. Press, Cambridge, 2001.
[10] Alain Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.