An algebraic proof for the Umemura polynomials for the third Painlevé equation
 Publisher: arxiv.org

Subject: QA351  QA372arxiv: Nonlinear Sciences::Exactly Solvable and Integrable Systems

References
(75)
[1] T. Amdeberhan, Discriminants of Umemura polynomials associated to Painlev´e III, Phys. Lett. A, 354 (2006) 410413.
[2] I.V. Barashenkov and D.E. Pelinovsky, Exact vortex solutions of the complex sineGordon theory on the plane, Phys. Lett. B, 436 (1998) 117124.
[3] M. Bertola and T. Bothner, Zeros of large degree Vorob'evYablonski polynomials via a Hankel determinant identity, Int. Math. Res. Not. IMRN, 2015 (2015) 93309399.
[4] P. Bracken, P.P. Goldstein and A.M. Grundland, On vortex solutions and links between the Weierstrass system and the complex SineGordon equation, J. Nonl. Math. Phys., 10 (2003) 464486.
[5] P. Bracken and A.M. Grundland, On multivortex solutions of the Weierstrass representation, Phys. Atom. Nucl., 65 (2003) 10281032.
[6] E. Br´ezin and S. Hikami, Characteristic polynomials of random matrices, Commun. Math. Phys., 214 (2000) 111135.
[7] R.J. Buckingham and P.D. Miller, The sineGordon equation in the semiclassical limit: critical behavior near a separatrix, J. Anal. Math., 118 (2012) 397492.
[8] R.J. Buckingham and P.D. Miller, Largedegree asymptotics of rational Painlev´eII functions: noncritical behaviour, Nonlinearity, 27 (2014) 24892578.
[9] R.J. Buckingham and P.D. Miller, Largedegree asymptotics of rational Painlev´eII functions: critical behaviour, Nonlinearity, 28 (2015) 15391596.
[10] Y. Chen and M.V. Feigin, Painlev´e IV and degenerate Gaussian unitary ensembles, J. Phys. A, 39 (2006) 1238112393.

Similar Research Results
(5)
An algebraic proof for the Umemura polynomials for the third Painlev\'e equation (2016) 92%Generalized Umemura Polynomials (2002) 78%〔資料紹介〕梅村豊撮影歌舞伎写真 (2009) 76%〔資料紹介〕梅村豊撮影歌舞伎写真（五） (2014) 75%Report on Kabuki Photographs Taken by Umemura Yutaka (4) (2013) 75% 
Metrics
0views in OpenAIRE0views in local repository9downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Kent Academic Repository  IRUSUK 0 9

 Download from


Cite this publication