Optimising gut colonisation resistance against Clostridium difficile infection

Article English OPEN
Yuille, Samantha ; Mackay, W. Gordon ; Morrison, Douglas J. ; Tedford, M. Catriona (2015)

Clostridium difficile is the dominant cause of pseudomembranous colitis in nosocomial environments. C. difficile infection (CDI) generally affects elderly (≥ 65) hospital in-patients who have received broad spectrum antimicrobial treatment. CDI has a 30% risk of reinfection and subsequent 60% risk of relapse thereafter, leading to a high economic burden of over 7 billion pounds sterling and over 900,000 cases in the USA and Europe per annum. With the long-term consequences of faecal transplantation currently unknown, and limited spectrum of effective antibiotics, there is an urgent requirement for alternative means of preventing and treating CDI in high risk individuals. Metagenomics has recently improved our understanding of the colonisation resistance barrier and how this could be optimised. pH, oxidation-reduction potentials and short chain fatty acids have been suggested to inhibit C. difficile growth and toxin production in vitro and in vivo studies. This review aims to pull together the evidence in support of a colonisation resistance barrier against CDI.
  • References (12)
    12 references, page 1 of 2

    20 21 22 23 24 25 26 27 28 29 30 31 32 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 69 70 71 72 73 74 75 76 77 78 79 80 81 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 146 147 148 149 150 151 152 153 154 155 11. Summit Therapeutics PLC (2014) C. difficile Infections.

    http://www.summitplc.com/programmes/c-difficile-infections/ - Accessed 02/02/15 12. Cohen S. H., Gerding D. N., Johnson S., Kelly C. P., Loo C. V. G., McDonald L. C., Pepin J. and Wilcox M. H. (2010) Clinical Practice Guidelines for Clostridium difficile Infection in Adults: 2010 Update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infection Control and Hospital Epidemiology. 31(5) 13. Pépin J., Routhier S., Gagnon S. and Brazeau I. (2006) Management and Outcomes of a First Recurrence of Clostridium difficile-Associated Disease in Quebec, Canada.

    Clinical Infectious Diseases 42: 758-64 14. Goorhuis A., Van der Kooi T., Vaessen N., Dekker F. W., Van den Berg., Harmanus C., van den Hof S., Notermans D. W. and Kuijper E. J. (2007) Spread and Epidemiology of Clostridium difficile Polymerase Chain Reaction Ribotype 027/Toxinotype III in The Netherlands. Clinical Infectious Diseases 45:695-703 15. Hensgens M. P. M., Goorhuis A., van Kinschot C. M. J., Crobach M. J. T., Harmanus C. and Kuijper E. J. (2011) Clostridium difficile Infection in an Endemic Setting in the Netherlands. Eur. J. Clin. Microbiol. Infect. Dis. 30: 587-593 16. Bauer M. P., Notermans D. W., van Benthem B. H. B., Brazier J. S., Wilcox M. H., Rupnik M., Monnet D. L., van Dissel J. T. and Kuijper E. J. (2011) Clostridium difficile Infection in Europe: A Hospital-Based Survey. The Lancet 377: 63-73 17. Kutty P. K., Woods C. W., Sena A. C., Benoit S. R., Naggie S., Frederick J., Evans S., Engel J. and McDonald L. C. (2010) Risk Factors for and Estimated Incidence of Community-Associated Clostridium difficile Infection, North Carolina, USA.

    Emerging Infectious Diseases 16(2): 197-204 18. Dallal R. M., Harbrecht B. G., Boujoukas A. J., Sirio C. A., Farkas L. M., Lee K. K.

    and Simmons R. L. (2001) Fulminant Clostridium difficile: An Underappreciated and Increasing Cause of Death and Complications. Annals of Surgery 235(3): 363-372 19. Aguayo C., Flores R., Lévesque S., Araya P., Ulloa S., Lagos J., Hormazabal J. C., Tognarelli J., Ibánez D., Pidal P., Duery O., Olivares B. and Fernandez J. (2015) Rapid Spread of Clostridium difficile NAP1/027/ST1 in Chile Confirms the Emergence of the Epidemic Strain in Latin America. Epidemiol. Infect. 17: 1-5 20. Huber C. A., Hall L., Foster N. F., Gray M., Allen M., Richardson L. J., Robson J., Vohra R., Schlebusch S., George N., Nimmo G. R., Riley T. V. and Paterson D. L.

    and Harrison L. H. (2013) Use of Multilocus Variable Number of Tandem Repeats Analysis Genotyping to Determine the Role of Asymptomatic Carriers in Clostridium difficile Transmission. Clin. Infec. Dis. 57(8): 1094-102 26. Mullane K. (2014) Fidaxomicin in Clostridium difficile Infection: Latest Evidence and Clinical Guidance. Therapeutic Advances in Chronic Disease 5(2): 69-84 27. Goldstein E. J., Citron D. M., Tyrrell K. L. and Merriam C. V. (2013) Comparative in vitro Activities of SMT 19969, a New Antimicrobial Agent, against Clostridium difficile and 350 Gram-Positive and Gram-Negative Aerobic and Anaerobic Intestinal Flora Isolates. Antimicrobial Agents in Chemotherapy 57(10): 4873-76 28. Louie T. J., Emery J., Krulicki W., Byrne B. and Mah M. (2009) OPT-80 Eliminated Clostridium difficile and is Sparing of Bacteroides species During Treatment of C.

    difficile Infection. Antimicrob. Agents Chemother. 53: 261-263 29. Naaber P., Smidt I., Štšepetova J., Brilene T., Annuk H. and Mikelsaar M. (2004) Inhibition of Clostridium difficile Strains by Intestinal Lactobacillus species. Journal of Medical Microbiology 53: 551-554 30. Cammarota G., Ianiro G., Bibbò S., Gasbarrini A. (2014) Gut Microbiota Modulation: Probiotics, Antibiotics or Fecal Microbiota Transplantation? Intern. Emerg. Med. 9: 365-373 31. Fuentes S., van Nood E., Tims S., Jong H. I., ter Braak C. J. F., Keller J. J., Zoetendal E. G. and de Vos W. M. (2014) Reset of a Critically Disturbed Microbial Ecosystem: Faecal Transplant in Recurrent Clostridium difficile Infection. The ISME Journal 1-13 32. Petrof E. O., Claud E. C., Gloor G. B. and Allen-Vercoe E. (2012) Microbial Ecosystems Therapeutics: A New Paradigm in Medicine? Beneficial Microbes; 4(1): 53-65 33. Grönlund M. M., Lehtonen O. P., Eerola E. and Kero P., (1999) Fecal Microbiota in Healthy Infants Born by Different Methods of Delivery: Permanent Changes in Intestinal Flora after Cesarean Delivery. J. Ped. Gast. Nut. 28(1) 19-25 34. O'Hara A. M., Shanahan F. (2006) The Gut Flora as a Forgotten Organ. EMBO Reports 7, 688-693 35. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., … Wang, J.

    (2010). A human gut microbial gene catalog established by metagenomic sequencing. Nature, 464(7285), 59-65. doi:10.1038/nature08821 36. Hill M. J. and Drasar B. S. (1975) The Normal Colonic Bacterial Flora. Gut, 16: 318- 323 37. Epsey M. G. (2013) Role of Oxygen Gradients in Shaping Redox Relationships Between the Human Intestine and its Microbiota. Free Rad. Biol. Med.; 55: 130-40 38. Circu M. L. and Aw T. Y. (2012) Intestinal Redox Biology and Oxidative Stress.

    Seminars in Cell & Developmental Biology. 23: 729-737 39. Donskey C. J. (2004) The Role of the Intestinal Tract as a Reservoir and Source for Transmission of Nosocomial Pathogens. Clin. Infect. Dis.; 39: 219-26 40. Sullivan Å., Edlund C. and Nord C. E. (2001) Effect of Antimicrobial Agents on the Ecological Balance of Human Microbiota. The Lancet Infectious Diseases Volume 1: 101-114 41. Bourke E., Milne M. D. and Stokes G. S. (1996) Caecal pH and Ammonia in Experimental Uraemia. Gut 7: 558-561 42. Orr W. C. and Chen C. L. (2002) Aging and Neural Control of the GI Tract IV.

    Physiol. Gastrointest. Liver Physiol. 283: G1226-G1231 43. May T., Mackie R. I., Fahey G. C. Jr., Cremin J. C. and Garleb K. A. (1994) Effect of Fiber Source on Short-Chain Fatty Acid Production and on the Growth and 44. Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshiomura K., Tobe T., Clarke J. M., Topping D. L., Suzuki T., Taylor T. D., Kikuchi J., Morita H., Hattori M. and Ohno H. (2011) Bifidobacteria Can Protect from Enteropathogenic Infection through Production of Acetate. Nature 469: 543-547 45. Canani R. B., Costanzo M. D., Leone L., Pedata M., Meli R. and Calignano A. (2011) Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Disease.

  • Metrics
    No metrics available
Share - Bookmark