A high frequency $hp$ boundary element method for\ud scattering by convex polygons
 Publisher: Society for Industrial and Applied Mathematics

Related identifiers: doi: 10.1137/110856812

References
(46)
[1] Digital Library of Mathematical Functions, http://dlmf.nist.gov/ (2010).
[2] S. Arden, S. N. ChandlerWilde, and S. Langdon, A collocation method for highfrequency scattering by convex polygons, J. Comput. Appl. Math., 204 (2007), pp. 334343.
[3] A. Asheim and D. Huybrechs, Local solutions to highfrequency 2D scattering problems, J. Comput. Phys., 229 (2010), pp. 53575372.
[4] I. Babuˇska, B. Q. Guo, and E. P. Stephan, On the exponential convergence of the hp version for boundary element Galerkin methods on polygons, Math. Methods Appl. Sci., 12 (1990), pp. 413427.
[5] I. Babuˇska and M. Suri, The p and hp versions of the finite element method, basic principles and properties, SIAM Rev., 36 (1994), pp. 578632.
[6] T. Betcke, S. N. ChandlerWilde, I. G. Graham, S. Langdon, and M. Lindner, Condition number estimates for combined potential boundary integral operators in acoustics and their boundary element discretisation, Numer. Methods Partial Differential Equations, 27 (2011), pp. 3169.
[7] T. Betcke and E. A. Spence, Numerical estimation of coercivity constants for boundary integral operators in acoustic scattering, SIAM J. Numer. Anal., 49 (2011), pp. 15721601.
[8] O. P. Bruno, C. A. Geuzaine, J. A. Monro, Jr., and F. Reitich, Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: The convex case, Philos. Trans. R. Soc. Lond. Ser. A, 362 (2004), pp. 629645.
[9] O. P. Bruno and F. Reitich, High order methods for highfrequency scattering applications, in Modeling and Computations in Electromagnetics, H. Ammari, ed., Lect. Notes Comput. Sci. Eng. 59, Springer, Berlin, 2007, pp. 129164.
[10] S. N. ChandlerWilde and I. G. Graham, Boundary integral methods in high frequency scattering, in Highly Oscillatory Problems, B. Engquist, T. Fokas, E. Hairer, and A. Iserles, eds., London Math. Soc. Lecture Note Ser. 366, Cambridge University Press, Cambridge, UK, 2009, pp. 154193.

Similar Research Results
(11)
11 research results, page 1 of 2
 1
 2

Metrics
No metrics available

 Download from


Cite this publication