Share  Bookmark

 Download from


[1] T.A. Davis, Direct Methods for Sparse Linear Systems, SIAM Series on the Fundamentals of Algorithms, SIAM, Philadelphia, USA, 2006.
[2] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia, USA, 2003.
[3] V. Simoncini, D.B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 159.
[4] M.H. Gutknecht, Lanczostype solvers for nonsymmetric linear systems of equations, Acta Numer., 6 (1997), pp. 271397.
[5] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H.A. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (2nd Edition), SIAM, Philadelphia, USA, 1994.
[6] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409436.
[7] X.M. Gu, M. Clemens, T.Z. Huang, L. Li, The SCBiCG class of algorithms for complex symmetric systems with applicationsin several electromagnetic model problems, Comput. Phys. Commun., 191 (2015), pp. 5264.
[8] C. Paige, M. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975), pp. 617629.
[9] E. Stiefel, Relaxationsmethoden bester Strategie zur Lo¨sung linearer Gleichungssysteme, Comment. Math. Helv., 29 (1955), pp. 157179.
[10] S.F. Ashby, T.A. Manteuffel, P.E. Saylor, A taxonomy for conjugate gradient methods, SIAM J. Numer. Anal., 27 (1990), pp. 15421568.
The information is available from the following content providers:
From  Number Of Views  Number Of Downloads 

Institutional Repository  IRUSUK  0  95 