On the numerical continuation of isolas of equilibria

Article English OPEN
Avitabile, Daniele ; Desroches, Mathieu ; Rodrigues, Serafim (2012)

We present a numerical strategy to compute one-parameter families of isolas of equilibrium solutions in ODEs. Isolas are solution branches closed in parameter space. Numerical\ud continuation is required to compute one single isola since it contains at least one unstable segment. We show how to use pseudo-arclength predictor-corrector schemes in order to follow an entire isola in parameter space, as an individual object, by posing a suitable algebraic problem. We continue isolas of equilibria in a two-dimensional dynamical system, the so-called continuous stirred tank reactor model, and also in a three-dimensional model related to plasma physics. We then construct a toy model and follow a family of isolas past a fold and illustrate how to initiate the computation close to a formation center, using approximate ellipses in a model inspired by the Van der Pol equation. We also show how to introduce node adaptivity in the discretization of the isola, so as to concentrate nodes in region with higher curvature. We conclude by commenting on the extension of the proposed numerical strategy to the case of isolas of periodic orbits.
  • References (33)
    33 references, page 1 of 4

    [1] Aronson, D. G., Chory G. R., Hall, G. R., & McGehee, R. P. [1982] \Bifurcations from an invariant circle for two-parameter families of maps onf the plane: a computer-assisted study", Commun. Math. Phys. 83, 303{354.

    [2] Ascher, U. M. & Petzold, L. R. [1998] Computer Methods for Ordinary Di erential Equations and Di erential-Algebraic Equations (SIAM).

    [3] Ball, R., Dewar, RL & Sugama, H. [2002] \Metamorphosis of plasma turbulence{shear- ow dynamics through a transcritical bifurcation", Phys. Rev. E 66, 66408.

    [4] Beyn, W. J. & Thummler, V. [2007] \Phase conditions, symmetries and PDE continuation", in Numerical Continuation Methods for Dynamical Systems, eds. B. Krauskopf, H. M. Osinga & J. Galan-Vioque (Springer), pp. 301{330.

    [5] Chan, T. [1983] \Numerical Bifurcation Analysis of Simple Dynamical Systems", Masters thesis (Concordia University).

    [6] Champneys, A. R. & Sandstede, B. [2007] \Numerical computation of coherent structures", in Numerical Continuation Methods for Dynamical Systems, eds. B. Krauskopf, H. M. Osinga & J. Galan-Vioque, (Springer) pp. 331{358.

    [7] Cousin-Rittemard, N. M. M. & Gruais, I. [2007] \Continuation methods and disjoint equilibria", Rev. Roumaine Math. Pures Appl. 52, 9{34.

    [8] Dankowicz, H. & Schilder, F. [2011] \An extended continuation problem for bifurcation analysis in the presence of constraints", J. Comput. Nonlin. Dyn. 6, 031003.

    [9] Dellwo, D. R., Keller, H. B., Matkowsky, B. J. & Reiss, E. L. [1982] \On the birth of isolas", SIAM J. Appl. Maths 42, 956{963.

    [10] Dellwo, D. R. [1986] \A Constructive Theory of Isolas Supported by Parabolic Cusps, centers and Bifurcation Points", SIAM J. Appl. Maths 46, 740{764.

  • Metrics
    No metrics available
Share - Bookmark