Shrink wrapping redox-active crystals of polyoxometalate open frameworks with organic polymers via crystal induced polymerisation

Other literature type, Article English OPEN
Takashima, Yohei ; Miras, Haralampos N. ; Glatzel, Stefan ; Cronin, Lee (2016)

We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.
  • References (12)
    12 references, page 1 of 2

    40 1. D.-Y. Du, J.-S. Qin, S.-L. Li, Z.-M. Su and Y.-Q. Lan Chem. Soc. Rev., 2014, 43, 4615. 2. a) A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh and G. Izzet, Chem. Soc. Rev., 2012, 41, 7605; b) B. Nohra, H. El Moll, L. M. R. Albelo, P. Mialane, J. Marrot, C. Mellot-Draznieks, M. O' 45 Keeffe, R. N. Biboum, J. Lemaire, B. Keita, L. Nadjo and A. Dolbecq, J. Am. Chem. Soc., 2011, 133, 13363. 3. a) C. Ritchie, C. Streb, J. Thiel, S. G. Mitchell, H. N. Miras, D.-L. Long, T. Boyd, R. D. Peacock, T. McGlone and L. Cronin, Angew. Chem. 2008, 120, 6987; Angew. Chem. Int. Ed. 2008, 47, 6881; b) J.

    50 Thiel, C. Ritchie, C. Streb, D.-L. Long and L. Cronin, J. Am. Chem. Soc. 2009, 131, 4180; c) J. Thiel, C. Ritchie, H. N. Miras, C. Streb, S. G. Mitchell, T. Boyd, M. N. C. Ochoa, M. H. Rosnes, J. McIver, D.-L. Long and L. Cronin, Angew. Chem. 2010, 122, 7138; Angew. Chem. Int. Ed. 2010, 49, 6984; d) C. Streb, C. Ritchie, D.-L. Long, P. Kögerler and L. Cronin, Angew. Chem. 2007, 119, 7723; Angew. Chem. Int. Ed. 2007, 46, 7579; e) S. G. Mitchell, C. Streb, H. N. Miras, T. Boyd, D.- L. Long and L. Cronin, Nat. Chem. 2010, 2, 308.

    4. a) H. N. Miras, J. Yan, D.-L. Long and L. Cronin, Chem. Soc. Rev., 2012, 41, 7403; b) H. N. Miras, L. Vilà-Nadal and L. Cronin, Chem. Soc. Rev., 2014, 43, 5679; d) N. Mizuno and M. Misono, Chem. Rev. 1998, 98, 199; e) J. T. Rhule, C. L. Hill, D. A. Judd and R. F. Schinazi, Chem. Rev. 1998, 98, 327; g) T. Yamase, Chem. Rev. 1998, 98, 307.

    5. a) N. K. Mal, M. Fujiwara and Y. Tanaka, Nature 2003, 421, 350; b) S. Angelos, Y.-W. Yang, N. M. Khashab, J. F. Stoddart and J. I. Zink, J. Am. Chem. Soc. 2009, 131, 11344; c) W. J. Rieter, K. M. Taylor and W. Lin, J. Am. Chem. Soc. 2007, 129, 9852.

    6. a) Z. Wang and S. M. Cohen, J. Am. Chem. Soc. 2007, 129, 12368; b) K. K. Tanabe, Z. Wang and S. M. Cohen, J. Am. Chem. Soc. 2008, 130, 8508; c) Y. Zhu and M. Fujiwara, Angew. Chem. 2007, 119, 2291; Angew. Chem. Int. Ed. 2007, 46, 2241.

    7. A. Brunsen, J. Cui, M. Ceolín, A. del Campo, G. J. A. A. Soler-Illia and O. Azzaroni, Chem. Commun. 2012, 48, 1422.

    8. J. R. Bryant, J. E. Taves and J. M. Mayer, Inorg. Chem. 2002, 41, 2769.

    9. a) X. Chen, J. Devaux, J.-P. Issi and D. Billaud, Poly. Eng. Sci. 1995, 35, 642; b) C.-G. Wu, D. C. DeGroot, H. O. Marcy, J. L. Schindler, C. R. Kannewurf, Y.-J. Liu, W. Hirpo and M. G. Kanatzidis, Chem. Mater. 1996, 8, 1992.

    10. a) E. I. Ross-Medgaarden and I. E. Wachs, J. Phys. Chem. C 2007, 111, 15089; b) M. Cochet, G. Louarn, S. Quillard, M. I. Boyer, J. P. Buisson and S. Lefrant, J. Raman Spectrosc. 2000, 31, 1029.

    11. a) J. P. Pouget, M. E. Józefowicz and A. J. Epstein, Macromolecules, 1991, 24, 779; b) D. Li, J. Huang and R. B. Kaner, Acc. Chem. Res. 2009, 42, 135.

  • Bioentities (1)
    1ani Protein Data Bank
  • Metrics
    No metrics available
Share - Bookmark