Share  Bookmark

 Download from


 Funded by

[1] L. Ambrosio, Lecture Notes on Geometric Evolution Problems, Distance Function, and Viscosity Solutions, Pubblicazioni 1029, Istituto di Analisi Numerica del CNR, Pavia, Italy, 1997.
[2] I. Babuˇska and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15 (1978), pp. 736754.
[3] E. Ba¨nsch, Finite element discretization of the NavierStokes equations with a free capillary surface, Numer. Math., 88 (2001), pp. 203235.
[4] G. Barles and P. E. Souganidis, A new approach to front propagation problems: Theory and applications, Arch. Ration. Mech. Anal., 141 (1998), pp. 237296.
[5] K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Princeton University Press, Princeton, NJ, 1978.
[6] K. Deckelnick, Error bounds for a difference scheme approximating viscosity solutions of mean curvature flow, Interfaces Free Bound., 2 (2000), pp. 117142.
[7] K. Deckelnick and G. Dziuk, Error estimates for a semiimplicit fully discrete finite element scheme for the mean curvature flow of graphs, Interfaces Free Bound., 2 (2000), pp. 341 359.
[8] G. Dziuk, Numerical schemes for the mean curvature flow of graphs, in Variations of Domain and FreeBoundary Problems in Solid Mechanics (Paris, 1997), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 6370.
[9] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 4377.
[10] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), pp. 17291749.
The information is available from the following content providers:
From  Number Of Views  Number Of Downloads 

Sussex Research Online  IRUSUK  0  28 