A comparison of two chemistry and aerosol schemes on the regional scale and resulting impact on radiative properties and warm and cold aerosol-cloud interactions

Other literature type English OPEN
Glassmeier, Franziska ; Possner, Anna ; Vogel, Bernhard ; Vogel, Heike ; Lohmann, Ulrike (2017)
  • Journal: (issn: 1680-7324, eissn: 1680-7324)
  • Related identifiers: doi: 10.5194/acp-2016-1092
  • Subject:
    arxiv: Physics::Atmospheric and Oceanic Physics

The complexity of the atmospheric aerosol causes large uncertainties in its parameterization in atmospheric models. In a process-based comparison of two aerosol and chemistry schemes within the regional atmospheric modeling framework COSMO-ART, we identify key sensitivities of aerosol parameterizations. We consider the aerosol module MADE in combination with full gas-phase chemistry and the aerosol module M7 in combination with a constant-oxidant-field-based sulfur cycle. For a Saharan dust outbreak reaching Europe, modeled aerosol populations are more sensitive to structural differences between the schemes, in particular the consideration of aqueous-phase sulfate production, the selection of aerosol species and modes and modal composition, than to parametric choices like modal standard deviation and the parameterization of aerosol dynamics. The same observation applies to aerosol optical depth (AOD) and the concentrations of cloud condensation nuclei (CCN). Differences in the concentrations of ice-nucleating particles (INP) are masked by uncertainties between two ice-nucleation parameterizations and their coupling to the aerosol scheme. Differences in cloud droplet and ice crystal number concentrations are buffered by cloud microphysics as we show in a susceptibility analysis.
Share - Bookmark