Direct North-South synchronization of abrupt climate change record in ice cores using beryllium 10

Article, Other literature type, Unknown English OPEN
Raisbeck , G. M. ; Yiou , F. ; Jouzel , Jean ; Stocker , T. F. (2007)
  • Publisher: European Geosciences Union (EGU)
  • Journal: Climate of the Past (issn: 1814-9324, eissn: 1814-9332)
  • Related identifiers: doi: 10.5194/cp-3-541-2007
  • Subject: [ SDU.STU.GL ] Sciences of the Universe [physics]/Earth Sciences/Glaciology | [ SDU.STU.GC ] Sciences of the Universe [physics]/Earth Sciences/Geochemistry | [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences | [SDU.STU.GL] Sciences of the Universe [physics]/Earth Sciences/Glaciology | [ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment | [SDE.MCG.CPE] Environmental Sciences/Global Changes/domain_sde.mcg.cpe | [SDU.STU.GC] Sciences of the Universe [physics]/Earth Sciences/Geochemistry | [ SDE.MCG.CPE ] Environmental Sciences/Global Changes/domain_sde.mcg.cpe

Gas is trapped in polar ice sheets at 50–120m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (1age) in the past. However, such models need to be validated by data, in particular for periods colder than present day on the East Antarctic plateau. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC) site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML) ice core, both in the ice phase (using volcanic horizons) and in the gas phase (using rapid methane variations). We also use the structured 10Be peak, occurring 41 kyr before present (BP) and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the 1age during this event. Our results seem to reveal an overestimate of the 1age by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Although the exact reasons for the 1age overestimate at the two EPICA sites remain unknown at this stage, we conclude that current densification model simulations have deficits under glacial climatic conditions. Whatever the cause of the 1age overestimate, our finding suggests that the phase relationship between CO2 and EDC temperature previously inferred for the start of the last deglaciation (lag of CO2 by 800±600 yr) seems to be overestimated.
  • References (42)
    42 references, page 1 of 5

    Beer, J., Johnsen, S. J., Bonani, G., Finkel, R. C., Langway, C. C., Oeschger, H., Stauffer, B., Suter M., and Wo¨lfli, W.: 10Be peaks as time markers in polar ice core records, in: The Last Deglaciation: Absolute and Radiocarbon Chronologies, edited by: Bard, E. and Broecker, W. S., Springer, New York, 141-143, 1992.

    Bender, M., Sowers, T., Dickson, M.-L., Orchardo, J., Grootes, P., Mayewski, P. A., and Meese, D. A.: Climate correlations between Greenland and Antarctica during the past 100 000 years, Nature, 372, 663-666, 1994.

    Bender, M., Malaize´, B., Orchardo, J., Sowers, T., and Jouzel, J.: High precision correlations of Greenland and Antarctic ice core records over the last 100 kyr, in: Mechanisms of Global Climate Change at Millennial Time Scales, edited by: Clark, P. U., Webb, D. J., Keigwin, L. D., American Geophysical Union, Washington, vol. 112, pp. 149-164, 1999.

    Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, Science, 291, 109-112, 2001.

    Blunier, T., Chappellaz, J., Schwander, J., Dallenbach, A., Stauffer, B., Stocker, T. F., Raynaud, D., Jouzel, J., Clausen, H. B., Hammer, C. U., and Johnsen, S. J., Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 394(6695), 739-743, 1998.

    Blunier, T., Spahni, R., Barnola, J. M., Loulergue, L., and Schwander, J.: Synchronization of ice core records via atmospheric gases, Clim. Past, 3, 325-330, 2007, http://www.clim-past.net/3/325/2007/.

    Broecker, W. S.: Paleocean circulation during the last deglaciation: a bipolar seesaw?, Paleoceanography, 13, 119-121, 1998.

    Caillon, N., Jouzel, J., Severinghaus, J. P., Chappellaz, J., and Blunier, T.: A novel method to study the phase relationship between Antarctic and Greenland climate, Geophys. Res. Lett., 30(17), 1899-2002, 2003.

    Castagnoli, G. C., Albrecht, A., Beer, J., Bonino, G., Shen, C., Callegari, E., Taricco, C., Dittrich-Hannen, B., Kubik, P., Suter, M., and Zhu, G. M.: Evidence for enhanced Be-10 deposition in Mediterranean sediments 35-Kyr BP, Geophys. Res. Lett., 22(6), 707-710, 1995.

    Crowley, T. J.: North Atlantic deep water cools the southern hemisphere, Paleoceanography, 7, 489-497, 1992.

  • Metrics
    No metrics available
Share - Bookmark