Climate-related changes in peatland carbon accumulation during the last millennium

Other literature type, Article English OPEN
Charman, D.J. ; Beilman, D.W. ; Blaauw, M. ; Booth, R.K. ; Brewer, S. ; Chambers, F.M. ; Christen, J.A. ; Gallego-Sala, A. ; Harrison, S.P. ; Hughes, P.D.M. ; Jackson, S.T. ; Korhola, A. ; Mauquoy, D. ; Mitchell, F.J.G. ; Prentice, I.C. ; Van Der Linden, M. ; De Vleeschouwer, F. ; Yu, Z. C. ; Alm, J. ; Bauer, I.E. ; Corish, Y.M.C. ; Garneau, M. ; Hohl, V. ; Huang, Y. ; Karofeld, E. ; Le Roux, G. ; Loisel, J. ; Moschen, R. ; Nichols, J.E. ; Nieminen, T.M. ... view all 42 authors (2013)
  • Publisher: Copernicus Publications
  • Journal: (issn: 1726-4170)
  • Related identifiers: doi: 10.5194/bg-10-929-2013
  • Subject: QH540-549.5 | QE1-996.5 | Ice | Ecologie, Environnement | Climate | QH501-531 | Geology | Life | [ SDV.EE ] Life Sciences [q-bio]/Ecology, environment | Ecology | Carbon | Peat | Age | Little
    • ddc: ddc:570

International audience; Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.
  • References (63)
    63 references, page 1 of 7

    Abe-Ouchi A. and Harrison, S. P.: Constraining the carbon-cycle feedback using palaeodata: the PalaeoCarbon Modelling Intercomparison Project, EOS 90, p. 140, 2009.

    10 Ahn, J., Brook, E. J., Mitchell, L., Rosen, J., McConnell, J. R., Taylor, K., Etheridge, D., and Rubino, M.: Atmospheric CO2 over the last 1000 yr: a high-resolution record from the west antarctic ice sheet (WAIS) divide ice core, Global Biogeochem. Cy., 26, GB2027, doi:10.1029/2011GB004247, 2012.

    Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., Caldeira, K., Mat15 sumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric lifetime of fossil fuel carbon dioxide, Annu. Rev. Earth Pl. Sc., 37, 117-34, 2009.

    Bauer, I. E., Bhatti J. S., Swanston, C., Wieder, R. K., Preston, C. M.: Organic matter accumulation and community change at the peatland-upland interface: inferences from 14C and 210Pb dated profiles, Ecosystems, 12, 636-653, 2009.

    20 Beilman, D. W., MacDonald, G. M., Smith, L. C., Reimer, P. J.: Carbon accumulation in peatlands of west siberia over the last 2000 yr, Global Biogeochem. Cy., 23, GB1012, doi:10.1029/2007gb003112, 2009.

    Belyea, L. R. and Baird, A. J.: Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development, Ecol. Monogr., 76, 299-322, 2006.

    25 Blaauw, M. and Christen, J. A.: Radiocarbon peat chronologies and environmental change, Appl. Statist., 54, 805-816, 2005.

    Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Analysis, 6, 457-474, 2011.

    Clymo, R. S.: The limits to peat bog growth, Philos. T. Roy. Soc. Lon. B, 303, 605-654, 1984.

    14347 Cox, P. and Jones, C.: Illuminating the modern dance of climate and CO2, Science, 321, 1642- 1644, 2008.

  • Metrics
    No metrics available