Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies

Article, Unknown, Other literature type English OPEN
Zalachori , I. ; Ramos , M.H. ; Garçon , R. ; Mathevet , T. ; Gailhard , J. (2012)
  • Publisher: HAL CCSD
  • Journal: (issn: 1992-0636)
  • Related identifiers: doi: 10.5194/asr-8-135-2012
  • Subject: [ SDE ] Environmental Sciences | FLOW FORECASTING | PREVISION HYDROLOGIQUE | BIAS CORRECTION | ENSEMBLE PREDICTION | HYDROLOGICAL FORECAST | STATISTICAL MODEL | MODELE STATISTIQUE | PREVISION METEOROLOGIQUE | WEATHER FORECASTING | PREVISION DE DEBIT | STREAMFLOW FORECAST
    arxiv: Physics::Geophysics | Physics::Atmospheric and Oceanic Physics

The aim of this paper is to investigate the use of statistical correction techniques in hydrological ensemble prediction. Ensemble weather forecasts (precipitation and temperature) are used as forcing variables to a hydrologic forecasting model for the production of ensemble streamflow forecasts. The impact of different bias correction strategies on the quality of the forecasts is examined. The performance of the system is evaluated when statistical processing is applied: to precipitation and temperature forecasts only (<i>pre-processing</i> from the hydrological model point of view), to flow forecasts (<i>post-processing</i>) and to both. The pre-processing technique combines precipitation ensemble predictions with an analog forecasting approach, while the post-processing is based on past errors of the hydrological model when simulating streamflows. Forecasts from 11 catchments in France are evaluated. Results illustrate the importance of taking into account hydrological uncertainties to improve the quality of operational streamflow forecasts.
  • References (26)
    26 references, page 1 of 3

    Bartholmes, J. C., Thielen, J., Ramos, M. H., and Gentilini, S.: The european flood alert system EFAS - Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts, Hydrol. Earth Syst. Sci., 13, 141-153, doi:10.5194/hess-13-141- 2009, 2009.

    Boucher M.-A., Tremblay, D., Delorme, L., Perreault, L., and Anctil, F.: Hydro-economic assessment of hydrological forecasting systems, J. Hydrol., 416-417, 133-144, 2012.

    Brown, J. D. and Seo, D.-J.: A nonparametric post-processor for bias-correction of hydrometeorological and hydrologic ensemble forecasts, J. Hydrometeorol., 11, 642-665, 2010.

    Casati, B., Wilson, L. J., Stephenson, D. B., Nurmi, P., Ghelli, A., Pocernich, M., Damrath, U., Ebert, E. E., Brown, B. G., and Mason, S.: Forecast verification: current status and future directions, Meteorol. Appl., 15, 3-18, 2008.

    Cloke, H. and Pappenberger, F.: Ensemble Flood Forecasting: A Review, J. Hydrol., 375, 613-626, 2009.

    Fortin, V., Favre, A. C., and Eriem, S.: Probabilistic forecasting from ensemble prediction systems: Improving upon the bestmember method by using a different weight and dressing kernel for each member, Q. J. Roy. Meteorol. Soc., 132, 1349-1369, 2006.

    Garc¸on, R.: Mode`le global Pluie-De´bit pour la pre´vision et la pre´de´termination des crues (Lumped rainfall-runoff model for flood forecasting and design flood estimation), La Houille Blanche, 7/8, 88-95, 1999 (in French).

    Gneiting, T., Raftery, A. E., Westveld, A. H., and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133, 1098-1118, 2005.

    Hashino, T., Bradley, A. A., and Schwartz, S. S.: Evaluation of biascorrection methods for ensemble streamflow volume forecasts, Hydrol. Earth Syst. Sci., 11, 939-950, doi:10.5194/hess-11-939- 2007, 2007.

    Jaun, S. and Ahrens, B.: Evaluation of a probabilistic hydrometeorological forecast system, Hydrol. Earth Syst. Sci., 13, 1031- 1043, doi:10.5194/hess-13-1031-2009, 2009.

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark