Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle

Article, Other literature type English OPEN
Charbit , S. ; Ritz , C. ; Philippon , G. ; Peyaud , V. ; Kageyama , M. (2006)
  • Publisher: European Geosciences Union (EGU)
  • Journal: (issn: 1814-9332, eissn: 1814-9332)
  • Related identifiers: doi: 10.5194/cp-3-15-2007
  • Subject: [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences | [ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment

International audience; A 3-dimensional thermo-mechanical ice-sheet model is used to simulate the evolution of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle. The ice-sheet model is forced by the results from six different atmospheric general circulation models (AGCMs). The climate evolution over the period under study is reconstructed using two climate equilibrium simulations performed for the Last Glacial Maximum (LGM) and for the present-day periods and an interpolation through time between these snapshots using a glacial index calibrated against the GRIP d<sup>18</sup>O record. Since it is driven by the timing of the GRIP signal, the temporal evolution of the ice volume and the ice-covered area is approximately the same from one simulation to the other. However, both ice volume curves and spatial distributions of the ice sheets present some major differences from one AGCM forcing to the other. The origin of these differences, which are most visible in the maximum amplitude of the ice volume, is analyzed in terms of differences in climate forcing. This analysis allows for a partial evaluation of the ability of GCMs to simulate climates consistent with the reconstructions of past ice sheets. Although some models properly reproduce the advance or retreat of ice sheets in some specific areas, none of them is able to reproduce both North American or Eurasian ice complexes in full agreement with observed sea-level variations and geological data. These deviations can be attributed to shortcomings in the climate forcing and in the LGM ice-sheet reconstruction used as a boundary condition for GCM runs, but also to missing processes in the ice-sheet model itself.
  • References (77)
    77 references, page 1 of 8

    Adler, R. F., Susskind, J., Huffman, G. J., Bolvin, D., Nelkin, E., Chang, A., Ferraro, R., Gruber, A., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., and Arkin, P.: The Version2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present), J. Hydrometeorol., 4(6), 1147-1167, 2003.

    Alexander, R. C. and Mobley, R. L.: Monthly average sea surface temperatures and ice pack limits on a 1 global grid, Mon. Wea. Rev., 104, 143-148, 1976.

    Andersen, K. K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H., et al.: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147-151, 2004.

    Andrews, J. T. and Barry, R. G.: Glacial inception and disintegration during the last glaciation, Ann. Rev. Earth Planet. Sci., 6, 205-228, 1978.

    Bamber, J. L., Layberry, R. L., and Gogenini, S. P.: A new ice thickness and bed data set for the Greenland ice sheet. 1. Measurement, data reduction and errors, J. Geophys. Res., 106(D24), 33 773-33 780, 2001.

    Bard, E., Hamelin, B., and Fairbanks, R. B.: U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years, Nature, 346, 456-458, 1990.

    Bard, E., Jouannic, C., Hamelin, B., Pirazzoli, P., Arnold, M., Faure, G., Sumosusastro, P., and Syaefudin: Pleistocene sea levels and tectonic uplift based on dating of corals from Sumba Island, Indonesia, Geophys. Res. Lett., 23(12), 1473-1476, 1996a.

    Bard, E., Hamelin, B., Arnold, A., Montaggioni, L., Cabioch, G., Faure, G., and Rougerie, F.: Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge, Nature, 382, 241-244, 1996b.

    Bard, E., Rostek, F., and Me´not-Combes, G.: A better radiocarbon clock, Science, 303, 178-179, 2004.

    Bassinot, F., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton, N. J., and Lancelot, Y.: The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett., 126, 91-108, 1994.

  • Metrics
    No metrics available
Share - Bookmark